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Introduction

Enumeration problems, related to counting the number of objects with given
properties, have played an important role in combinatorics since its inception. Ex-
amples of such problems include estimating the number of integer solutions to sys-
tems of linear inequalities, counting the number of isomers of chemical compounds,
and determining the number of graphs with certain properties. Another important
class of combinatorial problems consists of extremal problems, related to describ-
ing the structure of objects from a given class that maximize or minimize certain
parameters. As an example, one can cite Turán’s famous theorem about the maxi-
mum number of edges in a graph that does not contain cliques of a given size. This
dissertation addresses problems that lie at the intersection of these two areas of com-
binatorics. Upper and lower bounds are proved for the number of independent sets
(that is, subsets of pairwise non-adjacent vertices) in graphs from various classes,
and the structure of graphs that achieve these bounds is described.

Historical Background

The problem of enumerating independent sets in graphs has been studied since
the middle of the last century and has become one of the classical areas in graph the-
ory. This problem finds applications not only directly in mathematics (combinatorial
number theory [17, 21], coding theory [14], theoretical computer science [26]), but
also in other fields. For example, in theoretical chemistry, the parameter i(G), equal
to the number of independent sets in a graph G, is called the Merrifield-Simmons
index [34], while the parameter i′(G), equal to the number of independent sets in
the line graph of G, is known as the Hosoya index [29]. Below is a brief review of
works on the enumeration of independent sets.

The terminology used hereafter generally follows the book [13]. Only simple
undirected graphs are considered below. A subset of pairwise non-adjacent vertices
in a graph is called independent. By maximal independent sets (m.i.s.), we mean
independent sets that are maximal with respect to inclusion. The maximum size of
an independent set in a graph is called the independence number of the graph. We
denote by α(G) the independence number of graph G, and by n(G) — the number
of vertices in G. We use i(G) and iM(G) to denote the number of independent
sets and the number of m.i.s. in G respectively. The notation G′ ≃ G′′ means that

3



4

graphs G′ and G′′ are isomorphic.
Among the first works in the field of enumerating independent sets are papers

[35] and [36], which independently proved the following fact.

Theorem 1 (R.E. Miller, D.E. Muller [35] and J.W. Moon, L. Moser [36]). Let G

be a graph on n vertices having the maximum number of m.i.s. among all n-vertex

graphs. Then G is

the union of n/3 copies of graph K3 when n ≡ 0 (mod 3),

the union of graph K2 and (n− 2)/3 copies of K3 when n ≡ 2 (mod 3),

the union of (n− 4)/3 copies of graph K3 and either graph K4 or two graphs K2

when n ≡ 1 (mod 3).

The extremal graphs in theorem 1 are a special case of graphs UKn,α , defined
as follows: UKn,α is the union of (α · (⌊n/α⌋ + 1) − n) cliques of size ⌊n/α⌋
and (n − α · ⌊n/α⌋) cliques of size ⌈n/α⌉. One can verify that n(UKn,α) = n,
α(UKn,α) = α.

Theorem 1 has been generalized in various directions by several authors. For
example, C. Croitoru [25] considered the problem of upper-bounding the number of
m.i.s. in the class of all graphs with a given independence number. J.M. Nielsen [37]
obtained an achievable upper bound on the number of m.i.s. of a given size in graphs.
In both of these problems, the maximum is achieved on the graph UKn,α . Such
bounds are used to obtain estimates of running times for graph coloring algorithms
and determining the size of maximum independent sets (see, for example, [26, 37]).
This is enabled by the existence of algorithms that enumerate all m.i.s. in a graph in
time proportional to the number of m.i.s. multiplied by a polynomial in the number
of vertices of the graph [31, 43].

It is also interesting to obtain bounds on the number of m.i.s. in classes of graphs
described in terms of forbidden subgraphs. M. Hujter and Z. Tuza [30] obtained a
bound on the number of m.i.s. in triangle-free graphs (i.e., graphs not containing K3

as a subgraph). In the work of V.E. Alekseev [1], the number of m.i.s. was studied in
graphs that do not contain a ”large” matching (union of K2 graphs) as an induced
subgraph.

Considerable attention has been paid to obtaining bounds on the number of
independent sets in graphs with few cycles, primarily trees. In the work [40] of
H. Prodinger and R.F. Tichy, upper and lower bounds were obtained for the number
of independent sets in trees with a given number of vertices. Let ϕn denote the
(n+ 2)-th Fibonacci number (ϕ0 = 1, ϕ1 = 2, ϕn = ϕn−1 + ϕn−2 for n ⩾ 2).

[This is an automated translation of the original manuscript from Russian into English]
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Theorem 2 (H. Prodinger, R. Tichy [40]). Let T be a tree on n vertices. Then

ϕn ⩽ i(T ) ⩽ 2n−1 + 1, where equality i(T ) = ϕn occurs only when T is a simple

path, and equality i(T ) = 2n−1 + 1 occurs only when T is a star.

In the same paper, the number of independent sets in a cycle on n vertices
was found. Apparently, the use of the term ”Fibonacci number of a graph” as a
synonym for the number of independent sets originates from Prodinger and Tichy’s
paper. In the work of S. Lin and C. Lin [33], trees were characterized whose number
of independent sets differs by no more than 7 from the maximum possible value of
2n−1 + 1.

In the paper by H.S. Wilf [44], an upper bound was obtained for the number of
maximal independent sets in trees with a given number of vertices:

Theorem 3 (H.S. Wilf [44]). For any tree T on n vertices, the inequalities iM(T ) ⩽ 2(n−1)/2

hold for odd n, and iM(T ) ⩽ 1 + 2(n−2)/2 for even n.

The original proof of theorem 3 was based on properties of partitions of natural
numbers. B.E. Sagan in [41], using graph-theoretical reasoning, simplified the proof
of theorem 3 and fully characterized the trees that achieve the upper bound. In
paper [44], a question was posed about the number of m.i.s. in connected graphs
with a given number of vertices. The answer was obtained in [28]. In work [42],
Wilf’s and Moon-Moser’s theorems were simultaneously generalized by considering
the class of connected graphs with a given number of cycles. For each fixed n and
r , graphs achieving the maximum number of m.i.s. in the class of all connected
n-vertex graphs with r cycles were identified in [42].

For further exposition, let us introduce several definitions. Let U = {u1, . . . ,
ud−1}, V = {v1, . . . , vp}, W = {w1, . . . , wq}. Denote by Bd,p,q a tree on the vertex

set U ∪V ∪W , such that its subtrees induced by the sets {u1}∪V , {ud−1}∪W and
U represent stars K1,p , K1,q and path Pd−1 respectively. Note that Bd,1,1 is simply a
path of length d. P.D. Vestergaard and A.S. Pedersen obtained the following upper
bound on the number of independent sets in trees of given diameter:

Theorem (P.D. Vestergaard, A.S. Pedersen [39]). For any n-vertex tree T of diam-

eter d, the inequality i(T ) ⩽ i(Bd,n−d,1) holds, with equality only when T ≃ Bd,n−d,1 .

In the same work [39], a question was posed about lower bounds on the number
of independent sets in trees of given diameter. For trees of diameter 4, an exhaustive
answer was given in work [27] (the theorem formulation is given in section 1.1).
Also in work [27], the structure of extremal trees of diameter 5 was described for
sufficiently large n. The Vestergaard problem (complete description of extremal trees

[This is an automated translation of the original manuscript from Russian into English]
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for arbitrary given number of vertices and diameter) remains unsolved in the general
case.

An important direction is obtaining asymptotic bounds on the number of in-
dependent sets in parametric classes of graphs. These include Hasse diagrams of
partially ordered sets, planar rectangular lattices, and others. In work [14], A.D. Ko-
rshunov and A.A. Sapozhenko obtained the asymptotics for the number of indepen-
dent sets in the graph of an n-dimensional Boolean cube (in the original, the result
was formulated in terms of the number of binary codes with distance 2).

Theorem (A.D. Korshunov, A.A. Sapozhenko [14]). For the graph of an n-dimensional

Boolean cube Bn , the following asymptotics holds:

i(Bn) ∼ 2
√
e22

n−1

.

For the number of independent sets in complete binary trees with n levels of
edges, V.P. Voronin and E.V. Demakova obtained the following result.

Theorem 4 (V.P. Voronin, E.V. Demakova [2]). Let ιn denote the number of inde-

pendent sets in a complete binary tree having k levels of edges. There exist constants

β and γ such that as n→ ∞, the following asymptotics holds:

ιn ∼ β · γ2n.

The question of asymptotics for the number of independent sets in planar rectan-
gular grids — graphs Γm,n , defined by the relations V (Γm,n) = {1, . . . ,m}×{1, . . . , n}
and

E(Γm,n) = {{(i1, j1), (i2, j2)} : |i1 − i2|+ |j1 − j2| = 1},

has also been actively studied. Among many works on this topic, we mention the
paper by H. S. Wilf and N. Calkin [23], characterized by the application of the
transfer matrix method, which proves the following

Theorem (H. S. Wilf, N. Calkin [23]). There exists a double limit as m,n→ ∞

i(Γm,n)
1

mn → η,

where 1.503 < η < 1.5035.

Estimates of the number of independent sets in regular and ”almost regular”
graphs (that is, graphs where vertex degrees are either pairwise equal or lie within
a relatively narrow range) are of significant interest. Some enumeration problems

[This is an automated translation of the original manuscript from Russian into English]
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in number theory and group theory reduce to problems of this type. For example,
the enumeration of sum-free sets (SFS) in abelian groups (that is, sets A such
that A ∩ {a + b | a, b ∈ A} = ∅) reduces to counting independent sets in Cayley
graphs. This approach was used by N. Alon in [21] to obtain the asymptotics of
the logarithm of the number of SFS in an interval of natural numbers. Later, also
using graph theory, A.A. Sapozhenko [17] obtained the asymptotics of the number
of SFS in an interval of natural numbers. The following estimate for the number of
independent sets in regular graphs was a working tool in paper [21].

Theorem (N. Alon [21]). For any k-regular graph G on n vertices, the number of

independent sets i(G) satisfies the inequality

i(G) ⩽ 2
n
2 (1+f(k)), (1)

where f(k) = O(k−0.1).

In the proof of this theorem, counting the number of independent sets in regular
graphs was reduced to counting the number of independent sets in almost regular
bipartite graphs. This possibility was provided by the following lemma.

Lemma 1 (N. Alon [21]). For every k-regular n-vertex graph, there exists a spanning

bipartite subgraph whose vertex degrees lie in the interval[
k/2− 2

√
k log2 k, k/2 + 2

√
k log2 k

]
.

Note that the problem of estimating the number of independent sets in bipartite
graphs also arises in other circumstances, for example, in solving the Dedekind
problem [19].

A.A. Sapozhenko proposed a simpler proof of estimate (1), while also improving
the remainder term to f(k) = O(

√
k−1 ln k) and extending the estimate to quasi-

regular graphs [16].
In work [21], the following was proposed

Conjecture (N. Alon [21]). Among k-regular graphs on n vertices where 2k | n,

the unique (up to isomorphism) graph that has the largest number of independent

sets is one that represents the union of n
2k disjoint complete bipartite graphs.

The graph from the hypothesis formulation will be called the Alon graph here-
after.

[This is an automated translation of the original manuscript from Russian into English]
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Figure 1. Alon graph

This hypothesis remains unproven to this day (April 2009), although most re-
searchers do not doubt its validity. The truth of this hypothesis would imply, in
particular, that in (1) there is an estimate f(k) = O(k−1).

Using an information-theoretical approach, J. Kahn and A. Lawrenz in paper [32]
obtained an achievable upper bound on the number of independent sets in bipartite
regular graphs, which indirectly supports Alon’s hypothesis.

Theorem 5 (J. Kahn, A. Lawrenz [32]). Let G be a bipartite k-regular graph on n

vertices. Then

i(G) ⩽ (2k+1 − 1)
n
k .

Note that the question of uniqueness of the extremal graph in theorem 5 remains
open to this day.

The question of the number of independent sets in graphs with known maximum
independent set size is interesting. This is related to a fairly general approach in
enumerative combinatorics, which can be called the container method [20]. The
method is as follows. Let A and B be families of subsets of some set. We say that
family B is a system of containers for A if for each A ∈ A there exists B ∈ B such
that A ⊆ B . Then, obviously, the inequality holds

|A| ⩽
∑
B∈B

2|B|.

Such estimates, though seemingly crude at first glance, allow obtaining asymp-
totics with suitable choice of system B . For example, this is how A.A. Sapozhenko
obtained a solution to the Cameron-Erdős problem [17]. The question of applicabili-
ty of the container method to the problem of estimating the number of independent
sets in graphs is closely related to the above-mentioned problem of enumerating
independent sets in graphs with fixed independence number, since the family of all
m.i.s. of a graph is a system of containers for the family of all independent sets, and
the independence number of a graph directly constrains the size of such containers.

In paper [1] the following was proved

Theorem 6 (V.E. Alekseev [1]). For any graph G, the inequality holds

i(G) ⩽
(n
α
+ 1
)α
, (2)

[This is an automated translation of the original manuscript from Russian into English]
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where n = n(G), α = α(G).

Inequality (2) was used in [1] to estimate the number of m.i.s. in graphs, and in
work [18] — to obtain upper bounds on the number of independent sets in quasi-
regular graphs with constraints on independence number and expanders. An achiev-
able lower bound on the number of independent sets in graphs with fixed indepen-
dence number was obtained in [38].

Brief Contents of the Dissertation

The dissertation consists of three chapters.
The first chapter is devoted to estimates of the number of independent sets in

trees of fixed diameter. Section 1.1 introduces the key concept of graph capacity and
provides several other definitions, proving auxiliary statements. Section 1.2 proves
lower bounds on the number of independent sets in trees of diameter 6, 7, 8, 9. In
particular, the following theorems are proved:

Theorem (sect. 1.2, theorems 8, 9). Any tree of diameter 6 on n vertices contains

at least 35(n−1)/7 independent sets. Any tree of diameter 7 on n vertices contains at

least 35(n−2)/7 independent sets. Any tree of diameter 8 on n vertices contains at

least 35122(n−1)/21 independent sets. Any tree of diameter 9 on n vertices contains

at least 35122(n−2)/21 independent sets.

Section 1.3 proves theorems characterizing the structure of extremal trees in the
Vestergaard problem. A tree T is called (n, d)-minimal if it has the smallest number
of independent sets among all trees of diameter d on n vertices. We denote by FT

the forest obtained from tree T by removing all central vertices.

Theorem (sect. 1.3, theorem 10). For any fixed d, there exists a finite set of trees

Md with the following property. For any n and any (n, d)-minimal tree T , each

component of forest FT is isomorphic to some tree from Md .

Let T ′ denote a tree such that forest FT ′ is a matching on six vertices. Let T ′′

denote a tree of diameter 6 such that forest FT ′′ is a union of four five-vertex paths.

Theorem (sect. 1.3, corollary from theorem 12). For d ∈ {6, 7} and for all suf-

ficiently large n of the form 7k + d − 5, k ∈ N, for any (n, d)-minimal tree T ,

all components of forest FT are isomorphic to tree T ′ . For d ∈ {8, 9} and for all

[This is an automated translation of the original manuscript from Russian into English]
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sufficiently large n of the form 21k + d− 7, k ∈ N, for any (n, d)-minimal tree T ,

all components of forest FT are isomorphic to tree T ′′ .

Section 1.4 provides estimates of the number of independent sets in so-called
radially regular trees, which are conjectured to be trees of minimal capacity.

Section 1.5 obtains a generalization of the Voronin-Demakova theorem to the
case of q -ary trees for arbitrary q . Let ιq, k denote the number of independent sets
in a complete q -ary tree having k levels of edges, or equivalently, diameter 2k . The
following is proved

Theorem (sect. 1.5, theorem 15). For q ∈ {2, 3, 4}, the following asymptotics holds

for ιq, k as k → ∞:

ιq, k ∼ βq · γq
k

q ,

for some constants βq and γq .

For q ⩾ 5, the following asymptotics holds as k → ∞:

ιq, 2k ∼ αq,0 · γq
2k

q ,

ιq, 2k+1 ∼ αq,1 · γq
2k+1

q ,

where constants αq,0 and αq,1 satisfy the inequality αq,0 > αq,1 .

The different character of the asymptotics of ιq, k for q ⩽ 4 and q ⩾ 5 deserves
attention.

The results of the first chapter are published in [4, 8].
The second chapter of the dissertation is devoted to estimates of the number of

maximal independent sets in graphs of given diameter. Section 2.1 introduces basic
definitions and proves some auxiliary statements. Section 2.2 provides a complete
description of graphs with given diameter that achieve the minimum number of
m.i.s. Define the sequence ψn by the relation ψn = ψn−2+ψn−3 and initial conditions
ψ0 = ψ1 = 1, ψ2 = 2.

Theorem (sect. 2.2, theorem 16). For any d, d ⩾ 4, and for any graph G of

diameter d, the inequality iM(G) ⩾ ψd+1 holds. If iM(G) = ψd+1 , then the set V (G)

can be partitioned into subsets V0, . . . , Vd , such that for any k, 2 ⩽ k ⩽ d, and any

i, 0 ⩽ i ⩽ d−k , there are no edges in G between vertices from Vi and Vi+k , and for

every i, 0 ⩽ i ⩽ d − 1, the subgraph of G induced by the set Vi ∪ Vi+1 is complete

bipartite with parts Vi and Vi+1 .

[This is an automated translation of the original manuscript from Russian into English]
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Section 2.3 provides a complete description of trees with given diameter and
number of vertices that achieve the maximum number of m.i.s. This gives a sub-
stantial generalization of Wilf’s [44] and Sagan’s [41] theorems:

Theorem (sect. 2.3, theorem 17). For any n-vertex tree T of diameter d, the

inequality iM(T ) ⩽M(n, d) holds, where

M(n, d) =



ψd−1 + (2(n−d+1)/2 − 1)ψd−2, for d ⩾ 4, n− d = 2k + 1, k ⩾ 0,

ψd−2 + ψd, for d ⩾ 4, n− d = 2,

2(n−d)/2ψd−1, for d ⩾ 5, d ̸= 7, n− d = 2k ⩾ 4,

2(n−d)/2ψd−1 + 1, for d ∈ {4, 7}, n− d = 2k ⩾ 4.

For d ⩾ 9 there exists a unique up to isomorphism tree on which this bound is

achieved (see sect. 2.3 for complete description of extremal trees for all d).

The results of the second chapter are published in [9, 10, 11, 12].
The third chapter of the dissertation investigates the number of independent sets

in graphs with given maximum independent set size. Inequality (2) becomes equality
when α|n (the maximum number of independent sets is achieved on graph UKn,α).
Theorem 18 proved in section 3.1 provides a refinement of estimate (2), making it
achievable for all possible combinations of parameters n, α, and also describes the
extremal graphs.

Theorem (sect. 3.1, theorem 18). For any graph G such that n(G) = n and

α(G) = α, the inequality i(G) ⩽ i(UKn,α) holds, becoming equality only for graphs

isomorphic to UKn,α .1

Section 3.2 provides estimates of the number of independent sets in trees and
forests with given independence number.

Theorem (sect. 3.2, theorem 19). For any n, α (n ⩾ 2), among all trees on n

vertices with independence number α, the maximum number of independent sets is
1This theorem, as it turns out, is a special case of the following Erdős theorem (see, for example, Corollary VI.1.10 in

B. Bollobás’s book Extremal graph theory): for any p, α, n satisfying inequalities 2 ⩽ p ⩽ α ⩽ n , graph UKn,α contains

more independent sets of size p than any other (non-isomorphic to it) n -vertex graph with independence number α .

See also the paper by Véronique Bruyére and Hadrien Mélot Turán Graphs, Stability Number, and Fibonacci Index

in the collection B. Yang, D.-Z. Du, and C.A. Wang (Eds.): Combinatorial Optimization and Applications: Second

International Conference, COCOA 2008, LNCS 5165, pp. 127–138, 2008.

[This is an automated translation of the original manuscript from Russian into English]
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achieved only by trees isomorphic to the tree obtained from star K1,α by subdividing

(n− α− 1) edges.

Theorem (sect. 3.2, theorem 20). Among all forests on n vertices without isolated

vertices with independence number α, the maximum number of independent sets is

achieved only by forests that are unions of a matching on 2(n− α− 1) vertices and

a star K1,2α−n+1 .

Section 3.3 is devoted to estimates of the number of independent sets in reg-
ular n-vertex graphs whose independence number is close to n/2 (that is, to the
maximum possible).

Theorem (sect. 3.3, theorem 22). For arbitrarily large K and N , there exists a

k-regular n-vertex graph G such that k > K , n > N , and

α(G) <
n

2

(
1− Ω(k−1)

)
,

log2(i(G)) >
n

2

(
1 + Ω(k−1)

)
.

On the other hand, for any constant θ ∈ (0, 1/2), for any k-regular n-vertex graph

G such that α(G) < n
2 (1− Ω(k−θ)), the inequality holds

log2(i(G)) <
n

2
(1− Ω(k−θ)).

Section 3.4 proves a generalization of theorem 5 to quasi-regular bipartite graphs:

Theorem (sect. 3.4, theorem 23). Let G be a bipartite graph with parts A and B .

Let the degrees of vertices in A be bounded above by k2 , and the degrees of vertices

in B be bounded below by k1 . Then

i(G) ⩽ (2k1 + 2k2 − 1)
|A|
k1 .

The results of the third chapter are published in [3, 5, 6, 7].

Main Results of the Dissertation

1. For arbitrary d, the structure of (n, d)-minimal trees is described (theorems 10,
11, 12). As a consequence, asymptotically achievable lower bounds are obtained
for the number of independent sets in trees of diameter 6, 7, 8, 9 (theorems 8, 9,
13).

[This is an automated translation of the original manuscript from Russian into English]
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2. An achievable lower bound is obtained for the number of maximal independent
sets in graphs of fixed diameter, with a complete description of extremal graphs
provided (theorem 16). An achievable upper bound is obtained for the number of
maximal independent sets in trees of fixed diameter, with a complete description
of extremal trees provided (theorem 17).

3. An achievable upper bound is obtained for the number of independent sets in
graphs with given independence number, with a complete description of the
graphs achieving this bound (theorem 18).

4. Estimates are obtained for the number of independent sets in regular graphs with
independence number close to the maximum (theorem 22).

[This is an automated translation of the original manuscript from Russian into English]



Chapter 1. Estimates of the Number of
Independent Sets in Trees of Fixed Diameter

Lower bounds are proved for the number of independent sets in trees of diameter
6, 7, 8, 9. A description of the structure of extremal trees is provided for the general
case.

The asymptotics of the number of independent sets in complete q -ary trees is
established.

1.1 Basic Concepts

We denote by ∂v the set of all vertices adjacent to v . The sets of vertices and
edges of graph G are denoted as V (G) and E(G) respectively. By G \ S we denote
the subgraph of graph G induced by the vertex set V (G)\S . The union of graphs G′

and G′′ is a graph G such that V (G) = V (G′)∪V (G′′) and E(G) = E(G′)∪E(G′′)

(notation: G = G′ ∪ G′′). Hereafter, it is assumed that the vertex sets of graphs in
the union do not intersect.

The capacity of graph G will be defined as the value

c(G) = (i(G))1/n(G).

The length of a path will mean the number of edges in it. The distance between
vertices u and v of a graph is the smallest of the lengths of paths connecting
these vertices (notation dist(u, v)). The diameter of a connected graph G (notation
diam(G)) is the largest of the distances between vertices of G. The eccentricity of
vertex v in graph G is the largest of the distances dist(v, u), where u ∈ V (G).
Any vertex of the graph having the smallest eccentricity is called the center of the
graph. Let d, n ∈ N, and let d < n. Any tree of diameter d on n vertices having
the minimum (maximum) number of independent sets among all trees with given
number of vertices and diameter will be called (n, d)-minimal (respectively, (n, d)-
maximal).

For tree T , we denote by FT the forest obtained by removing the central vertices
from T . Let T be an arbitrary tree, and T ′ its subtree. Let v ∈ V (T )\V (T ′), u ∈ V (T ′).
We say that tree T ′ adjoins with vertex u to vertex v in T if {u, v} ∈ E(T ) and
tree T ′ is a connected component of forest T \ {v}. For example, we can say that in

14
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any path of even diameter 2d, exactly two paths of diameter (d− 1) adjoin to the
central vertex with their end vertices. By Pt we denote a path on t vertices with a
distinguished root vertex. In the case of t ∈ {4, 5}, we consider the central vertex
as the root, and for t ∈ {1, 2, 3} — the end vertex.

By Tp,q,r we denote such a rooted tree that exactly p, q and r paths on 3, 2 and
1 vertices respectively adjoin to its root v , where the paths on 3 vertices adjoin to
v with their central vertices. Further, we write Tp,q instead of Tp,q,0 . One can verify
that the following equalities hold

n(Tp,q,r) = 3p+ 2q + r + 1,

i(Tp,q,r) = 5p3q2r + 4p2q.

For natural d we define the value

ĉ(d) = inf
T -tree,

diam(T )=d

c(T ). (3)

Note that from theorem 2 and the well-known Binet formula for Fibonacci num-
bers it follows that

lim
d→∞

ĉ(d) =
1 +

√
5

2
.

Lemma 2. For any graphs G1, G2 , the inequality holds

c(G1 ∪G2) ⩾ min{c(G1), c(G2)}.

Proof. Let us show that for any positive numbers a, b, c, d, the inequality holds

(ab)1/(c+d) ⩾ min{a1/c, b1/d}. (4)

Without loss of generality, assume that a1/c ⩽ b1/d . Then b ⩾ ad/c , whence ab ⩾ a1+d/c .

Raising both sides of the last inequality to the power of 1/(c+d), we get (ab)1/(c+d) ⩾ a1/c ,

which was required. We have

c(G1 ∪G2) = (i(G1 ∪G2))
1/n(G1∪G2) = (i(G1)i(G2))

1/(n(G1)+n(G2)).

It remains to apply inequality (4), setting a = i(G′), b = i(G′′), c = n(G′), and

d = n(G′′).

Lemma 3. Let T be a tree of diameter d. Then if d is even (odd), each tree in

forest FT has diameter no greater than d− 2 (respectively, d− 3).
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Proof. Consider the case of even d; the reasoning for odd d is similar. Let T be a tree

of diameter d, and let v be the unique central vertex in T . Let u1 . . . ud/2vw1 . . . wd/2

be a diametral path in T . Suppose that in FT there is a connected component

T ′ of diameter d′, d′ > d − 2. Without loss of generality, we can assume that

V (T ′)∩{u1, . . . , ud/2} = ∅. Let s be a vertex of T ′ adjacent to v in T . If s′ and s′′

are the ends of any diametral path in T ′ , then one of the paths s′ . . . s and s′′ . . . s

contains no fewer than ⌊(d′ + 1)/2⌋ ⩾ d/2 edges. Let this be path s′ . . . s, then path

u1 . . . ud/2vs . . . s
′ in T contains no fewer than (d+1) edges — a contradiction with

diam(T ) = d.

Lemma 4. For any n, d such that 2 ⩽ d < n, and any tree T of diameter d on n

vertices, the inequality holds

i(T ) >


(minm⩽d−2 ĉ(m))n−1, if d is even

(minm⩽d−3 ĉ(m))n−2, if d is odd

Proof. Let T be a tree of even diameter d on n vertices. Let v be the center in

T . By lemma 3, each tree from forest FT = Tn \ {v} has diameter no greater than

(d− 2). Then, taking into account lemma 2, we have

i(T ) > i(F ) = (c(F ))n−1 ⩾
(

min
m⩽d−2

ĉ(m)

)n−1

.

The case of odd d is considered similarly.

Lemma 5. Let trees T1, . . . , Tk adjoin to vertex v in tree T with vertices v1, . . . , vk
respectively. Let trees T̂1, . . . , T̂m be such that V (T )∩

⋃
i V (T̂i) = ∅, and V (T̂i)∩V (T̂j) = ∅

for i ̸= j . Let T̂ be the tree obtained from T by removing subtrees T1, . . . , Ts and

adding subtrees T̂1, . . . , T̂m such that in T̂ trees T̂1, . . . , T̂m adjoin to v with vertices

u1, . . . , um respectively. Let the inequality hold

i(T̂1) · . . . · i(T̂m) < i(T1) · . . . · i(Ts).

1. If

i(T̂1 \ {u1}) · . . . · i(T̂m \ {um})− i(T1 \ {v1}) · . . . · i(Ts \ {vs}) <

< i(T1) · . . . · i(Ts)− i(T̂1) · . . . · i(T̂m),
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then i(T̂ ) < i(T ).

2. If

i(T̂1 \ {u1}) · . . . · i(T̂m \ {um})− i(T1 \ {v1}) · . . . · i(Ts \ {vs}) =

= i(T1) · . . . · i(Ts)− i(T̂1) · . . . · i(T̂m)

and s < k , then i(T̂ ) < i(T ).

Proof. We have

i(T )− i(T̂ ) =

= i(T \ {v}) + i(T \ ({v} ∪ ∂v))− (i(T̂ \ {v}) + i(T̂ \ ({v} ∪ ∂v))) =

= i(T1) · . . . · i(Tk) + i(T1 \ {v1}) · . . . · i(Tk \ {vk})−

−i(T̂1) · . . . i(T̂m) · i(Ts+1) · . . . · i(Tk)−

−i(T̂1 \ {u1}) · . . . i(T̂m \ {um}) · i(Ts+1 \ {vs+1}) · . . . · i(Tk \ {vk}) =

=
(
i(T1) · . . . · i(Ts)− i(T̂1) · . . . · i(T̂m)

)
· i(Ts+1) · . . . · i(Tk)×

×
(
1− i(Ts+1\{vs+1})·...·i(Tk\{vk})

i(Ts+1)·...·i(Tk)
· i(T̂1\{u1})·...·i(T̂m\{um})−i(T1\{v1})·...·i(Ts\{vs})

i(T1)·...·i(Ts)−i(T̂1)·...·i(T̂m)

)
.

It is easy to see that under the conditions of the lemma, each of the factors in the

last product is positive, from which the statement of the lemma follows.

We will need two following statements from [27].

Lemma 6 (A. Frendrup et al. [27]). Let tree T of diameter d have the minimum

number of independent sets among trees of diameter d with the same number of

vertices. Then no vertex in T is adjacent to more than two pendant vertices. If

a vertex is adjacent to two pendant vertices, then each of them must lie on some

diametral path in T .

Theorem 7 (A. Frendrup et al. [27]). Let Tn be a tree of diameter 4 on n vertices

having the minimum number of independent sets among n-vertex trees of diameter

4. Then T5 ≃ P5, T6 ≃ T0,2,1 . For n > 6, Tn ≃ Tp,q , where q = 2n + 1 (mod 3) for

n ⩾ 26, and for 7 ⩽ n ⩽ 25 the value of q is determined from Table 1.
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n 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

q 3 2 4 3 5 4 6 5 4 3 5 4 3 2 4 3 2 1 3

Table 1. Values of q in theorem 7

1.2 Number of Independent Sets in Trees of Diameter 6..9

Lemma 7. The equalities ĉ(d) = ϕ
1/(d+1)
d+1 hold for d ⩽ 3, and ĉ(4) = 351/7 . Among

trees of diameter 4, only tree T0,3 has capacity equal to ĉ(4).

Proof. Every path on (d+1) vertices has ϕd+1 independent sets, hence ĉ(d) ⩽ ϕ
1/(d+1)
d+1

for any d. For d = 4, we can specify tree T0,3 of diameter 4, having 7 vertices and 35

independent sets, therefore ĉ(4) ⩽ 351/7 . Note that ϕ1 > ϕ
1/2
2 > ϕ

1/3
3 > ϕ

1/4
4 > 351/7 .

To complete the proof, let us show that for any tree T of diameter d on n

vertices, for d = 4 the inequality i(T ) ⩾ 35n/7 holds, and for d ⩽ 3 the inequality

i(T ) ⩾ ϕ
n/(d+1)
d+1 holds. For trees of diameter 0 and 1 this holds. The statement also

holds for trees where n ⩽ d + 1, since in this case i(T ) ⩾ ϕn ⩾ ϕ
n/(d+1)
d+1 . Let us

assume that n ⩾ d + 2 and tree T contains the minimum number of independent

sets among all trees with given n and d.

1. d = 2. Then T is a star, and i(T ) = 2n−1 + 1 > 5n/3 for n ⩾ 4.

2. d = 3. In this case

i(T ) ⩾ 2n−2 + 2⌊n/2−1⌋ + 2⌈n/2−1⌉ > 81/4

(for 5 ⩽ n ⩽ 8 the inequality i(T ) > 81/4 is verified directly, and for n ⩾ 9 the

inequality 2(n−2)/n > 81/4 holds).

3. d = 4. Let us proceed by induction on n. The fact that for n = 6, 13 every

n-vertex tree of diameter 4, not isomorphic to T0,3 , has capacity greater than

351/7 , is verified directly using theorem 7 (this forms the base case of induction).

Let n ⩾ 14 and all trees T ′ of diameter d on n′ < n vertices contain no fewer

than 35n
′/7 independent sets. Since n ⩾ 14, from theorem 7 it follows that the

tree achieving the minimum number of independent sets for given n and d = 4
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contains two pendant vertices w and w′ having a common neighbor v . Using the

induction hypothesis, we get

i(T ) = i(T \ {w}) + 2i(T \ {w,w′, v}) ⩾

⩾ 35(n−1)/7 + 2 · 35(n−3)/7 =

= 35n/7(35−1/7 + 2 · 35−3/7) > 35n/7,

which completes the inductive step. The lemma is proved.

Theorem 8. 1. Every tree of diameter 6 on n vertices contains at least 35(n−1)/7

independent sets.

2. Every tree of diameter 7 on n vertices contains at least 35(n−2)/7 independent

sets.

Proof. The theorem follows from lemmas 4 and 7.

Remark. The bounds 1 and 2 of theorem 8 are asymptotically tight for n ≡ 1(mod7)

and n ≡ 2 (mod 7) respectively.

Proof. Consider a tree T ′ on (7t+1) vertices of diameter 6, such that t trees of type

T0,3 are adjacent to the central vertex. We have i(T ′) = 35t+27t ∼ 35t . Similarly, we

can consider a tree T ′′ of diameter 7 on (7t+2) vertices, such that ⌊t/2⌋ trees T0,3
are adjacent to one of the central vertices, and ⌈t/2⌉ trees T0,3 are adjacent to the

other central vertex. We have i(T ′′) = 35t + 27⌊t/2⌋35⌈t/2⌉ + 35⌊t/2⌋27⌈t/2⌉ ∼ 35t .

Let us denote by T̃6 such a tree of diameter 6 that when removing the cen-
tral vertex from T̃6 , the resulting forest consists of four five-vertex paths. We have
n(T̃6) = 21, i(T̃6) = 35122, hence c(T̃6) = 351221/21 . By definition, it follows that
ĉ(6) ⩽ 351221/21 . Tree T̃6 is shown in Fig. 2.

Lemma 8. For j ⩽ 5, the inequality ĉ(j) > ĉ(6) holds.

Proof. The inequalities ĉ(j) > ĉ(6) for j ⩽ 4 follow from lemma 7 and inequalities

351/7 > 351221/21 ⩾ ĉ(6).

Let us prove that ĉ(5) > ĉ(6). Let T be an arbitrary (n, 5)-minimal tree. Con-

sider two cases:
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Figure 2. Tree T̃6

1. Let tree T have the following form: when removing from T two central vertices

u, v and edges incident to them, the resulting forest consists of 2-vertex paths,

where vertex u is adjacent to the ends of p paths, and vertex v to the ends of q

paths, p, q ⩾ 1, p+ q = n/2− 1. Then

c(T ) = (i(T ))1/n(T ) = (3p+q + 2p3q + 3p2q)
1

2(p+q+1) .

The minimum of expression 3p+q + 2p3q + 3p2q under constraints p+ q = A and

p, q ⩾ 1 is achieved at p = q = A/2. Hence

c(T ) ⩾ inf
n∈N, n⩾6

(3n/2−1 + 2 · 6n/4−1/2)1/n.

The inequality

(3n/2−1 + 2 · 6n/4−1/2)1/n > 351221/21

for 6 ⩽ n ⩽ 21 is verified directly, and for n ⩾ 22 the inequality

(3n/2−1 + 2 · 6n/4−1/2)1/n > 35/11 > 351221/21

holds.

2. Now consider the case when tree T has a form different from that considered in

p. 1. Note that in this case there exists a vertex in T to which two paths are

adjacent by their end vertices, where the first path contains one vertex and the

second contains p vertices, where p ∈ {1, 2}. Let us replace them with one path

on (p+ 1) vertices. From p. 2 of lemma 5 it follows that for the obtained tree T̂

the relations i(T̂ ) < i(T ) and n(T̂ ) = n(T ) hold. Moreover, diam(T̂ ) ∈ {5, 6}. If

diam(T̂ ) = 5, then tree T is not (n, d)-minimal — contradiction with the choice

of T . If diam(T̂ ) = 6, then c(T ) > i(T̂ ) > ĉ(6).
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Estimating the value of ĉ(6)

Let T be some tree of diameter 6 on n vertices having the minimum number
of independent sets among all n-vertex trees of diameter d. Let T1, . . . , Tk be the
trees adjacent to the central vertex v of tree T at vertices v1, . . . , vk respectively.
We will consider T1, . . . , Tk as rooted trees with roots v1, . . . , vk . When speaking
about replacing subtree Ti with rooted tree T̂i in tree T , we will assume that the
replacement is done so that in the resulting tree, subtree T̂i is adjacent to vertex
v at its root. We will call a replacement reducing if the conditions of lemma 5 are
satisfied, that is, when under such replacement the number of independent sets in
the resulting tree is strictly less than in the original one. Table 2 shows possible
replacements and specifies the conditions under which they are reducing.

No. Ti T̂i Conditions

S1 T0,q,1 T1,q−1,0 q ⩾ 3

S2 Tp,q,1 Tp−1,q+2,0 p ⩾ 1, q ⩾ 0

S3 Tp,q, P1 Tp,q−1, P3

[
p⩾0, q⩾2

p⩾1, q=1

S4 Tp,0, P1 Tp−2,2, P3 p ⩾ 2

S5 P2, P1 P3

S6 P3, P1 P2, P2

S7 P4, P1 P3, P2

S8 T0,2,1, P1 T0,3

S9 T1,0 P4

S10 T0,q T2,q−3 q ⩾ 7

S11 T0,6 T0,3, T0,2,1

S12 P2, P2, P3 P2, P5

S13 P2, P2, P2 P3, P3

Table 2. Reducing replacements in trees of diameter 6

Note that none of the specified reducing replacements can be performed in tree
T (otherwise it would contradict the (n, d)-minimality of T ). From lemmas 3 and
6 follows

Proposition 1. Each of the trees T1, . . . , Tk either has diameter no more than 3,

or has the form Tp,q,r , where r ⩽ 1.
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From the impossibility of performing replacements S1 and S2 follows the follow-
ing fact.

Proposition 2. Among the subtrees T1, . . . , Tk of tree T for r > 0 there cannot be

trees of type Tp,q,r other than P2 , P4 and T0,2,1 .

From statement 2, lemma 6 and the impossibility of performing replacements
S3-S9 follows

Proposition 3. Among the subtrees T1, . . . , Tk of tree T having diameter less than

4, there can only be trees P2, P3, P4 .

The impossibility of performing replacements S10 and S11 implies the following

Proposition 4. Among the subtrees T1, . . . , Tk of tree T there cannot be trees T0,q
for q ⩾ 6.

From the impossibility of performing replacements S12 and S13 follows

Proposition 5. Among the subtrees T1, . . . , Tk of tree T there cannot be more than

two trees of type P2 . If among T1, . . . , Tk there is a tree P3 , then among T1, . . . , Tk
there are not more than one tree of type P2 .

Lemma 9. Every tree of diameter 6 on n vertices contains at least 35122n/21

independent sets. The capacity of every tree of diameter 6 not isomorphic to T̃6 is

strictly greater than 351221/21 .

Proof. Let us prove the lemma by induction on n. For n = 7 we have i(T ) = 34 >

> 351221/3 , and the statement of the theorem holds. Let n > 7 and the statement

of the lemma holds for all n′, n′ < n. Let T be a tree on n vertices having the

minimum number of independent sets among trees of diameter 6 on n vertices. If

n ⩾ 54, then from theorem 8 follows that

c(T ) ⩾ 35
n−1
7n ⩾ 3553/378 > 351221/21.

Further assume n ⩽ 53. If T has two pendant vertices u, v with a common neighbor

w , then, using the induction hypothesis and inequality ĉ(j) ⩾ 351221/21, j ⩽ 5, we
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get
i(T ) = i(T \ {u}) + i(T \ {u,w}) ⩾

⩾ 35122(n−1)/21 + 2 · 35122(n−3)/21 =

= 35122n/21(35122−1/21 + 2 · 35122−1/7) >

> 35122n/21.

Let T1, . . . , Tk be the trees adjacent to the central vertex v of tree T . If among trees

T1, . . . , Tk there is a tree P4 , then, using the induction hypothesis, decomposing T

by the pendant vertex adjacent to the root in P4 , we get

i(T ) ⩾ 35122n/21(35122−1/21 + 3 · 35122−4/21) > 35122n/21.

Similarly, if among T1, . . . , Tk there is a tree T0,2,1 , then, decomposing T by the

pendant vertex adjacent to the root in T0,2,1 , we get

i(T ) ⩾ 35122n/21(35122−1/21 + 9 · 35122−2/7) > 35122n/21.

From statements 1–5 it follows that it remains to consider the following cases:

1. Ti ≃ T0,qi for i = 1, k , where 1 ⩽ qi ⩽ 5. Then n−1
11 ⩽ k ⩽ n−1

3 . We have

i(T ) = (3q1 + 2q1) · . . . · (3qk + 2qk) + 3q1+...+qk .

Function

f(x1, . . . , xk) =
k∏

i=1

(3xi + 2xi)

achieves on the set {(x1, . . . , xk) | xi ⩾ 0,
∑k

i=1 xi = A} its minimum at point

(A/k, . . . , A/k). Therefore

i(T ) ⩾ (3
n−1−k

2k + 2
n−1−k

2k )k + 3
n−1−k

2 .

By enumeration over the set

M1 =
{
(n, k) ∈ N2 | n ∈ [7, 53], k ∈ [n−1

11 ,
n−1
3 ]
}

one can verify that

min
(n,k)∈M1

((
3

n−1−k
2k + 2

n−1−k
2k

)k
+ 3

n−1−k
2

)1/n
= 351221/21,

and the minimum is achieved only at point n = 21, k = 4.
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2. T1 ≃ T2 ≃ P2 , and Tj = T0,qj , where 2 ⩽ qi ⩽ 5, for j > 2. Then n ⩾ 15 and
n+17
11 ⩽ k ⩽ n+5

5 . In this case

c(T ) ⩾
(
9 ·
(
3

n−3−k
2k−4 + 2

n−3−k
2k−4

)k−2
+ 4 · 3

n−3−k
2

)1/n
.

By enumeration over the set

M2 =
{
(n, k) ∈ N2 | n ∈ [15, 53], k ∈ [n+17

11 , n+5
5 ]
}

one can verify that

min
(n,k)∈M2

(
9 ·
(
3

n−3−k
2k−4 + 2

n−3−k
2k−4

)k−2
+ 4 · 3

n−3−k
2

)1/n
> 1.65 > 351221/21,

(minimum is achieved at point n = 22, k = 5). In this case we have c(T ) > 351221/21 .

3. T1 ≃ P2 , and Tj = T0,qj , where 1 ⩽ qi ⩽ 5, for j > 1. In this case n ⩾ 9 and
n+8
11 ⩽ k ⩽ n

3 . We have

c(T ) ⩾
(
3 ·
(
3

n−k
2k−2 + 2

n−k
2k−2

)k−1
+ 2 · 3

n−k
2

)1/n
.

By enumeration over the set

M3 =
{
(n, k) ∈ N2 | n ∈ [9, 53], k ∈ [n+8

11 ,
n
3 ]
}

one can verify that

min
(n,k)∈M3

(
3 ·
(
3

n−k
2k−2 + 2

n−k
2k−2

)k−1
+ 2 · 3

n−k
2

)1/n
> 1.68 > 351221/21,

(minimum is achieved at point n = 53, k = 9). In this case again we get

c(T ) > 351221/21 . The lemma is proved.

From lemmas 4, 8 and 9 follows the following statement.

Theorem 9. 1. Every tree of diameter 8 on n vertices contains at least 35122(n−1)/21

independent sets.

2. Every tree of diameter 9 on n vertices contains at least 35122(n−2)/21 indepen-

dent sets.

The bounds 1 and 2 for n ≡ 1 (mod 21) and n ≡ 2 (mod 21) respectively are

asymptotically tight.
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1.3 Structure of (n, d)-minimal trees

Lemma 10. Let d be an even positive number, and let there exist a tree T of

diameter d or (d− 1), such that c(T ) = minm⩽d ĉ(m). Let n = n(T ).

1. There exists a tree T̂ ′ of diameter (d+2), for which c(T̂ ′) < c(T ) and n(T̂ ′) < 2n .

For every tree T ′ of diameter (d + 2) with number of vertices exceeding 2n+1n,

the inequality holds

c(T ′) >

(
1 +

1

5 · 2nn

)
c(T̂ ′).

2. There exists a tree T̂ ′′ of diameter (d+3), for which c(T̂ ′′) < c(T ) and n(T̂ ′′) < 2n .

For every tree T ′′ of diameter (d + 3) with number of vertices exceeding 2n+1n,

the inequality holds

c(T ′′) >

(
1 +

1

100 · 2nn

)
c(T̂ ′′).

Proof. Let T be the tree from the lemma’s conditions. Let n(T ) = n, i(T ) = i. For

d ⩽ 4 the validity of the lemma’s statement is easily verified. Further assume that

d ⩾ 6 and n ⩾ 10. Moreover, since c(T ) ⩽ ĉ(6) = 351221/21 < 5/3, then i < (5/3)n .

Let u be the central vertex in T ; we will consider it as the root vertex of T . Let

i0 = i(T \ {u}). Let k ⩾ 2, T1, . . . , Tk be copies of tree T , and let v /∈
⋃

j V (Tj).

By connecting the roots of trees T1, . . . , Tk with vertex v , we get a tree T̂ ′ having

diameter (d+ 2). Let’s find k for which inequality c(T̂ ′) < c(T ) holds:

c(T̂ ) < c(T ) ⇔ (ik + ik0)
1/(1+kn) < i1/n ⇔

⇔
(
(i0/i)

k + 1
)n
< i ⇔ k >

ln 1
i1/n−1

ln(i/i0)
.

(5)

From theorem 2 it directly follows that i1/n ⩾ (ϕn)
1/n > 1+

√
5

2 , hence

ln
1

i1/n − 1
< ln

1
1+

√
5

2 − 1
<

1

2
. (6)

Since for tree T the equality c(T ) = ĉ(d) holds, then

i ⩽ ĉ(6)n < (5/3)n.
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Further, from inequalities i0 < i < (5/3)n , and from inequality ln(1+x) ⩾ x
2 , which

holds for x ∈ (0, 1), follows

1

ln(i/i0)
=

1

ln
(
1 + i−i0

i0

) ⩽ 2i0
i− i0

⩽ 2 · (5/3)n. (7)

From (6) and (7) follows that

ln 1
i1/n−1

ln(i/i0)
< (5/3)n,

therefore for k > (5/3)n , considering (5), the inequality c(T̂ ′) < c(T ) will hold.

Further assume that k = 2n − 1, and T̂ ′ is the tree corresponding to such k . From

what was said above follows that c(T̂ ′) < c(T ). Moreover, n(T̂ ′) = 1+n(2n−1) < 2n .

From this follows the first statement of the first part of the lemma.

Consider an arbitrary tree T ′ of diameter (d+2) on n′ vertices, where n′ ⩾ 2kn.

By lemma 4, inequality c(T ′) > i(n
′−1)/n holds. Let’s estimate the ratio α = c(T ′)

c(T̂ ′)
:

α > 1 + lnα >

> 1 + ln
i
n′−1
n′n

(ik + ik0)
1/(1+kn)

=

= 1 +
n′ − 1− kn

n′n(1 + kn)
ln i− 1

1 + kn
ln
(
1 + (i0/i)

k
)
.

From this, considering inequality i0
i ⩽ 1− 1

i , using inequalities (1−1/x)x < e−1 (for

x > 1) and ln(1 + x) < x (for x > 0), we get

α > 1 +
n′ − 1− kn

n′n(1 + kn)
ln i − 1

1 + kn
ln
(
1 + e−k/i

)
>

> 1 +
1

(1 + kn)

(
n′ − 1− kn

n′n
ln i− e−k/i

)
.

From inequalities
(
1+

√
5

2

)n
< i < (5/3)n and equality k = 2n − 1, considering

n ⩾ 10, follows that ln i > 6n/25 and e−k/i < 1/400. Hence

α > 1 +
1

(1 + kn)

(
6(n′ − 1− kn)

25n′
− 1

400

)
.

It’s easy to verify that the last inequality for n′ ⩾ 2kn and kn > 100 implies

inequality α > 1 + 1
5kn , which completes the proof of the first part of the lemma.
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Similarly we prove the second part of the lemma, concerning trees of diameter

(d+3). For even k we consider tree T̂ ′′ on (kn+2) vertices, such that to each of its

two central vertices are adjacent k/2 trees isomorphic to T . Similarly we establish

that for k > 5 · (5/3)n the inequality c(T̂ ′′) < c(T ) holds. Further, for k = 2n − 2,

the corresponding tree T̂ ′′ , and every tree T ′′ of diameter (d + 3) on n′′ vertices,

where n′′ ⩾ 2kn, the relations hold

c(T ′′)

c(T̂ ′′)
> 1 + ln

i
n′−2
n′n(

ik + ik/2 · ik/20

)1/(2+kn)
>

> 1 +
1

2 + kn

(
2n′ − 2kn− 4

n′n
ln i− 2e−k/(2i)

)
>

> 1 +
1

2 + kn

(
12(n′ − kn− 2)

25n′
− 1

10

)
> 1 +

1

100kn
.

Proposition 6. Let natural numbers a, b, x, y satisfy inequalities a, b ⩽M , x, y ⩽ N

and a1/x > b1/y . Then a1/x

b1/y
> 1 + 1

MN(2M)N .

Proof. We have
a1/x

b1/y
=

(
1 +

ay/x − b

b

)1/y

> 1 +
ay/x − b

yb
. (8)

Two cases are possible:

1. ay/x ∈ N. Then, since ay/x > b, from (8) follows that

a1/x

b1/y
> 1 +

1

yb
> 1 +

1

MN
.

2. ay/x /∈ N. Let ρ = ay/x −
⌊
ay/x

⌋
. Then

N ∋
(⌊
ay/x

⌋
+ ρ
)x

=
x∑

k=0

(
x

k

)⌊
ay/x

⌋x−k

ρk =

=
⌊
ay/x

⌋x
+ ρ

x∑
k=1

(
x

k

)⌊
ay/x

⌋x−k

ρk−1.

From this and from inequalities 0 < ρ < 1 follows that

ρ ⩾
(

x∑
k=1

(
x

k

)⌊
ay/x

⌋x−k

ρk−1

)−1

>
1

(ay/x + 1)x
>

1

2xay
. (9)
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Using (8) and (9), we get

a1/x

b1/y
> 1 +

ρ

yb
> 1 +

1

2xayyb
> 1 +

1

MN(2M)N
.

Lemma 11. If T1 and T2 are trees on n1 and n2 vertices, n1, n2 ⩽ N , and

c(T1) > c(T2), then c(T1)/c(T2) > 1 + 3−N2−2 .

Proof. Let’s apply statement 6, setting a = i(T1), b = i(T2), x = n1 , y = n2 . From

constraints n1, n2 ⩽ N and i(T1), i(T2) < 2N , follows

c(T1)

c(T2)
> 1 +

1

2N ·N(2N+1)N
> 1 +

1

3N2+2
.

Let’s define function TOW(x) of natural argument x as follows: TOW(1) = 2

and TOW(x+ 1) = x · 2TOW(x) for x ⩾ 1.

Lemma 12. In the definition of value ĉ(d) (in the right part of (3)) the ex-

act lower bound is achieved, and only on trees with no more than TOW(d) ver-

tices. For every tree T of diameter d with more than TOW(d) vertices inequali-

ty c(T ) >
(
1 + 1

100·TOW(d)

)
ĉ(d) holds. For every tree T of diameter d such that

c(T ) > ĉ(d), inequality c(T ) >
(
1 + 1

3(TOW(d))2

)
ĉ(d) holds.

Proof. The lemma’s statement follows by induction from lemmas 10 and 11.

Theorem 10. Let d be an arbitrary natural number. There exists such a finite set

of trees Md that for any n and any (n, d)-minimal tree T each component of forest

FT is isomorphic to some tree from Md . It is possible to choose set Md so that

|Md| < 4200(TOW(d))2 .

Proof. Let T be an arbitrary tree of diameter d. Let’s show that each connected

component of FT has no more than 200(TOW(d))2 vertices, from which the theo-

rem’s statement will follow.
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Suppose in F there is a tree T ′ on n′ vertices, and n′ > 200(TOW(d))2 . By

lemma 12, there exists a tree Td such that n(Td) = n < TOW(d) and c(Td) = ĉ(d).

By lemma 12, inequality holds

i(T ′) >

(
1 +

1

100 · TOW(d)

)n′

(c(T ))n
′
.

From this and from inequality (1 + 1/x)x > 2 (for x > 1) follows that

i(T ′) > 2n
′/(100·TOW(d))(c(T ))n

′
.

Let’s replace in FT tree T ′ with ⌊n′/n⌋ copies of tree Td and n′−n · ⌊n′/n⌋ isolated

vertices. For the obtained forest F̂ inequalities will hold

i(F̂ )

i(FT )
<

(c(T ))n
′−n · 2n

2n′/(100·TOW(d))(c(T ))n′ <

< 2TOW(d)−n′/(100·TOW(d)) <

< 2−TOW(d).

For tree T̂ obtained from T by replacing forest FT with forest F̂ , by lemma 5, in-

equality i(T̂ ) < i(T ) will hold, while, by construction of T̂ , equalities n(T̂ ) = n(T )

and diam(T̂ ) = diam(T ) hold. This contradicts (n, d)-minimality of T . The ob-

tained contradiction completes the proof.

Similarly we prove

Theorem 11. Let d be an even number, and Md be the set of all trees T ′ for which

c(T ′) = minm⩽d ĉ(m). Then for d′ ∈ {d+2, d+3}, arbitrary natural number n, and

arbitrary (n, d′)-minimal tree T in forest FT no more than 2 · 3(TOW(d))2 vertices lie

in connected components not isomorphic to trees from Md .

Theorem 12. Let d be an even natural number, and Md be the set of all trees T ′

for which c(T ′) = cd = minm⩽d ĉ(m). Let d′ ∈ {d+ 2, d+ 3}. Consider the set

Jd = {j ∈ N | ∃T ′ ∈ Md, |V (T ′)| = j}.

We call number q decomposable by Jd if q =
∑l

s=1 js for some (not necessarily dis-

tinct) numbers j1, . . . , jl ∈ Jd . There exists such constant N that for all n, n ⩾ N ,
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such that (n− d′ + d+ 1) is decomposable by Jd , and arbitrary (n, d′)-minimal tree

T , each component of forest FT is isomorphic to some tree from Md .

Proof. The proof is generally similar to the proof of previous theorems. Consider

the case d′ = d+ 2. Let

δ = inf
T ′ /∈Md

c(T ′)

cd
,

m = min
T ′∈Md

n(T ′),

t = max
T ′∈Md,
v∈V (T ′)

i(T ′ \ {v})
i(T ′)

.

Obviously, t < 1 and m ⩾ 2. Moreover, from lemma 12 follows that δ > 1. Let

T̂ be an arbitrary n-vertex tree of diameter d′ such that each component of FT̂ is

isomorphic to some tree from Md (due to decomposability of number (n − 1) by

Jd , at least one such tree T̂ exists). We have i(̂(T )) ⩽ (t(1−1/m)(n−1) + 1)cn−1
d . Since

t(1−1/m) < 1, then for all sufficiently large n inequality t(1−1/m)(n−1) < δ − 1 holds,

and therefore inequality i(̂(T )) < δcn−1
d holds. Then for all sufficiently large n for

any (n, d′)-minimal tree T each component of FT must be isomorphic to a tree from

Md , because otherwise inequality i(T ) > δcn−1
d > i(̂(T )) would hold.

From theorem 12 follows, in particular

Corollary. For d ∈ {6, 7} and for all sufficiently large n of the form 7k + d −

−5, k ∈ N, for any (n, d)-minimal tree T all components of forest FT are isomorphic

to tree T0,3 . For d ∈ {8, 9} and for all sufficiently large n of the form 21k + d −

−7, k ∈ N, for any (n, d)-minimal tree T all components of forest FT are isomorphic

to tree T̃6 .

From lemmas 7, 9, 12 follows

Theorem 13. There exists such number N ′ that for d ∈ {6, 7} and every (n, d)-

minimal tree T ′ the number of vertices in FT ′ not lying in connected components iso-

morphic to T0,3 does not exceed N ′ . There exists such number N ′′ that for d ∈ {8, 9}

and every (n, d)-minimal tree T ′′ the number of vertices in FT ′′ not lying in connected

components isomorphic to T̃6 does not exceed N ′′ .
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1.4 Radially Regular Trees

For d ⩽ 6 trees of even diameter d having minimal capacity possess a certain
symmetry, which is expressed in the following definition. We call a tree of even
diameter radially regular if the degrees of all vertices of the tree located at the
same distance from the center of the tree coincide. We find plausible the following
statement.

Conjecture 1. Any tree of even diameter having minimal capacity is radially regu-

lar.

Proving hypothesis 1 would provide an opportunity for substantial reduction
in enumeration when searching for trees minimal by capacity, since radially regular
trees of diameter d are uniquely determined by d−2

2 parameters — degrees of vertices
at the same distance from the center. Let qj be the degree of vertices of a radially
regular tree of diameter d located at distance j from the center, 0 ⩽ j ⩽ d−2

2 .
Then, if the number of vertices in the tree does not exceed n, the qj must satisfy
constraints

1 +

d/2∑
k=1

k−1∏
j=0

qj ⩽ n. (10)

Through qj the number iq0, ..., qd/2−1
of independent sets in the corresponding tree can

be calculated using the recurrent relation

iqd/2−1
= 2qd/2−1 + 1,

iqd/2−2, qd/2−1
= i

qd/2−2
qd/2−1 + 2qd/2−2qd/2−1,

iqj , ..., qd/2−1
= iqjqj+1, ..., qd/2−1

+ iqjqj+1
qj+2, ..., qd/2−1

.

Similarly to lemma 4 we establish the following fact.

Proposition 7. If T is a tree having minimal capacity among radially regular trees

of diameter (d − 2), then for any radially regular n-vertex tree T ′ of diameter d

inequality c(T ′) > c(T )(n−1)/n holds.

Figure 3. Trees T̃8 and T̃10

From statement 7 and equality ĉ(6) = 351221/21 follows
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Proposition 8. Among radially regular trees of diameter 8 only tree T̃8 has minimal

capacity (Fig. 3).

Proof. We have c(T̃8) = 47219807211/45 . For any tree T of diameter 8 with number

of vertices n ⩾ 147, by statement 7, inequality holds

c(T ) > 35122146/(21·147) > c(T̃8)

. Consequently, it is sufficient to restrict consideration to trees with n ⩽ 146. For

such n there exist only 1552 sequences q0, . . . , qd/2−1 satisfying condition (10). By

enumeration over all these sequences the validity of the statement is established.

Similarly, minimal capacity radially regular trees of diameter 10÷ 26 are found.
Their parameters are given in Table 3. The extremal tree T̃10 of diameter 10 is also
shown in Fig. 3. From the definition of value ĉ(d) it follows that upper bounds for
the number of independent sets in radially regular trees of diameter d are upper
bounds for ĉ(d).

Diameter Number of vertices Sequence q0, . . . , qd/2−1

Capacity
(upper bound)

8 45 4, 2, 2, 1 1.6405163

10 37 4, 2, 1, 1, 1 1.6350322

12 45 4, 2, 1, 1, 1, 1 1.6322615

14 53 4, 2, 1, 1, 1, 1, 1 1.6300187

16 201 5, 3, 2, 1, 1, 1, 1, 1 1.6282445

18 231 5, 3, 2, 1, 1, 1, 1, 1, 1 1.6269451

20 261 5, 3, 2, 1, 1, 1, 1, 1, 1, 1 1.6259081

22 291 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1 1.6250981

24 321 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 1.6244353

26 351 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1.6238877

Table 3. Extremal radially regular trees

1.5 Asymptotics of the Number of Independent Sets in Com-
plete q-ary Trees

Consider sequence {ιq, k}∞k=1 , where ιq, k is the number of independent sets in a q -
ary tree having k levels of edges, or, equivalently, diameter 2k . Note that complete
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q -ary trees are a special case of radially regular trees. In this section we prove a
generalization of theorem 4 for arbitrary q (theorem 15).

Further through {xq, k}∞k=0 we will denote the sequence defined by relations

xq, 0 = 2,

xq, k+1 = 1 + x−q
q, k for k ⩾ 0.

Let’s prove several auxiliary statements.

Proposition 9. Let q, t, s be arbitrary positive numbers such that t ∈ [1, 2] and

s = 1 + t−q .

1. If t > 1+ t−q and t > 1+ (1+ t−q)−q , then s < 1+ s−q and s < 1+ (1+ s−q)−q .

2. If t < 1+ t−q and t < 1+ (1+ t−q)−q , then s > 1+ s−q and s > 1+ (1+ s−q)−q .

Proof. Let’s prove the first part of the statement, the second is proved similarly. We

have
t > 1 + t−q ⇔ t−q < (1 + t−q)−q ⇔

⇔ 1 + t−q < 1 + (1 + t−q)−q ⇔

⇔ s < 1 + s−q,

t > 1 + (1 + t−q)−q ⇔ 1 + t−q < 1 + (1 + (1 + t−q)−q)−q ⇔

⇔ s < 1 + (1 + s−q)−q.

Proposition 10. Let q be an arbitrary positive constant. Equation x = 1 + x−q

has on interval [1, 2] a unique real root ξq . For x ∈ [1, 2] inequality x > 1 + x−q

(x < 1 + x−q) is equivalent to inequality x > ξq ( respectively, x < ξq).

Proof. The statement follows from the strict increase and continuity of function

f(x) = xq+1 − xq − 1 on interval [1, 2], and inequalities f(1) < 0 < f(2).

Throughout the remainder of this section, we will denote by ξq the unique real
root of equation xq+1 − xq − 1 = 0 lying on interval [1, 2].

Proposition 11. For any q ⩾ 5 there exists such positive ε̂ = ε̂(q) that for any

ε ∈ (0, ε̂) inequalities hold

ε < ξq − (1 + (ξq + ε)−q) < qε, (11)
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ε < (1 + (ξq − ε)−q)− ξq < qε. (12)

Proof. First let’s show that for q ⩾ 5 inequalities hold

1 <
q

ξq+1
q

< q. (13)

Inequality q

ξq+1
q

< q is obvious. Let’s prove inequality 1 < q

ξq+1
q

. For this it is sufficient

to show that q1/(q+1) > ξq , which, in turn, by statement 10, is equivalent to inequality

q − qq/(q+1) − 1 > 0. We have

q − qq/(q+1) − 1 > 0 ⇔

⇔ (q − 1)q+1 > qq ⇔

⇔ (q + 1) ln(q − 1)− q ln q > 0.

(14)

Function f(q) = (q + 1) ln(q − 1)− q ln q has derivative

f ′(q) =
2

q − 1
− ln

(
1 +

1

q − 1

)
,

positive for g > 1. Therefore f(q) increases on interval [5,+∞), from which, con-

sidering inequality f(5) > 0, follows that for all q ⩾ 5 inequality f(q) > 0 holds.

From this and from (14) follows (13).

Consider function

g(ε) = ξq − (1 + (ξq + ε)−q) = ξ−q
q − (ξq + ε)−q.

We have g(0) = 0 and g′(0) = q
ξq+1 . Thus, due to (13), we get g′(0) ∈ (1, q).

From this follows that for sufficiently small values of ε we have g(ε) ∈ (ε, qε),

which is equivalent to (11). Similarly we establish the validity of inequalities (12)

for sufficiently small ε.

We will need the following classical result due to Sturm (see, for example, [15,
§4.2]):

Theorem 14 (C. Sturm). Let f(x) be a polynomial of degree k over R. Let sequence

of polynomials f0, . . . , fk be constructed by the following rule: f0 = f, f1 = f ′ , and

fj equals the remainder from division of fj−2 by fj−1 , taken with opposite sign, for

j ⩾ 2. Denote by ωf(x) the number of sign changes in sequence

f0(x), . . . , fk(x)
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. Then for any real numbers a and b such that f(a) ̸= 0, f(b) ̸= 0 and a < b, the

number of roots of f on interval [a, b] equals ωf(a)− ωf(b).

The sequence f0, . . . , fk in theorem 14, as well as any sequence whose polyno-
mials differ from fj by positive factors, is called a Sturm sequence for polynomial
f(x).

Proposition 12. For q ∈ {2, 3, 4} equation

x = 1 + (1 + x−q)−q (15)

has on interval [1, 2] a unique real root.

Proof. Equation (15) is equivalent to equation f(x) = 0, where f(x) = (x−1)(xq+1)q−xq2 .

For all positive q , obviously, inequalities f(1) < 0 < f(2) hold.

1. q = 2. It suffices to show that f(x) is convex on interval [1, 2]. Considering

derivative f ′′(x) = 20x3 − 24x2 + 12x− 4, for x ∈ [1, 1.5] we have

f ′′(x) ⩾ −4x2 + 12x− 4 ⩾ 9x− 4 > 0,

and for x ∈ [1.5, 2] we get 20x3 ⩾ 30x2 and f ′′(x) ⩾ 6x2 + 12x− 4 > 0.

2. q = 3. In this case f(x) = x10−2x9+3x7−3x6+3x4−3x3+x−1. For x ∈ [1, 98 ]

we have

f(x) ⩽ −7

8
x9 +

3

8
x6 +

3

8
x3 + x− 1 ⩽ −1

8
x9 + x− 1 < 0.

Thus, on interval [1, 9
8 ] equation f(x) = 0 has no roots. Now it suffices to show that

f(x) is convex on interval [98 , 2]. We have

f (5)(x) = 30240(x5 − x4) + 7560x2 − 2160x > 0

for x > 1. Moreover, the second, third and fourth derivatives of f(x) at point x = 9
8

are positive. From this follows the convexity of function f(x) for x ⩾ 9
8 .

3. q = 4. Let’s use Sturm’s theorem. In Appendix A a Sturm sequence for f(x) is

given. From it we can determine that

(sign f0(1), . . . , sign f17(1)) = (− 0 +−−+−−−+++−+−−−+),

(sign f0(2), . . . , sign f17(2)) = (+ + +−−+−−++−−+ +−+++),
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hence ωf(1) = 9, ωf(2) = 8. Consequently, by theorem 14, equation f(x) = 0 has

on interval [1, 2] a unique real root.

Lemma 13. Let q ∈ N, q ⩾ 2. Then

1. Sequence {xq, 2k}∞k=0 monotonically decreases, while sequence {xq, 2k+1}∞k=0 mono-

tonically increases. Moreover, for each k inequalities hold

xq, 2k+1 < ξq < xq, 2k.

2. For q ∈ {2, 3, 4} sequence {xq, k}∞k=0 converges to ξq . For q ⩾ 5 sequence

{xq, 2k}∞k=0 converges to ζq , while sequence {xq, 2k+1}∞k=0 converges to ηq , where ηq
and ζq are roots of equation x = 1+ (1+ x−q)−q such that 1 < ηq < ξq < ζq < 2.

Proof. Statement p. 1 of the lemma directly follows from statements 9 and 10

by induction, with the base of induction being obvious relations ξq < xq, 0 and

xq, 2 = 1 + (1 + 2−q)−q < 2 = xq, 0 .

Convergence of sequences {xq, 2k}∞k=0 and {xq, 2k+1}∞k=0 to finite limits immedi-

ately follows from boundedness and monotonicity of these sequences. Let’s denote

by ζq and ηq respectively limk→∞ xq, 2k and limk→∞ xq, 2k+1 . Obviously, ηq and ζq

are roots of equation (15). Moreover, from inequalities

xq, 2k+1 < ξq < xq, 2k,

which hold for any k , follows that ηq ⩽ ξq ⩽ ζq . According to statement 12, for

q ∈ {2, 3, 4} equation (15) has on interval [1, 2] a unique real root. This root,

obviously, coincides with ξq . Therefore for q ∈ {2, 3, 4} we have ηq = ζq = ξq .

Let’s show that for q ⩾ 5 strict inequalities ηq < ξq < ζq hold. Assume that

ζq = ξq , that is xq, 2k ↓ ξq as k → ∞. Let ε̂ be the constant from statement 11.

By assumption, there exists such k0 that xq, 2k0 − ξq < ε̂/q . But then, applying

statement 11 twice, we get xq, 2k0 − ξq < ξq − xq, 2k0+1 < ε̂ and

xq, 2k0 − ξq < ξq − xq, 2k0+1 < xq, 2k0+2 − ξq,

which contradicts monotonicity of sequence {xq, 2k}. Thus, ζq > ξq . Similarly the

validity of inequality ηq < ξq is established.
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For q ⩾ 2 let

γq = exp

( ∞∑
j=0

q−j ln xq, j

)
.

Value γq is correctly defined due to convergence of series
∑∞

j=1 q
−j ln xq,j , which

directly follows from inequalities 0 ⩽ ln xq,j ⩽ ln 2 for all j .

Theorem 15. For fixed q, q ∈ {2, 3, 4}, the following asymptotics holds as k → ∞:

ιq, k ∼ βq · γq
k

q ,

where βq is defined from Table 4.

q βq ≈

2 3

√√
93
18

+ 1
2
− 3

√√
93
18

− 1
2

0.6823278

3

√√√√√√√
√

3
√

12
√
849+108− 3

√
12

√
849−108

24
·


√√√√√

18

(
3
√

12
√
849+108+

3
√

12
√
849−108

)
3
√

12
√
849+108− 3

√
12

√
849−108

− 1− 1

 0.8511709

4 3

√
3
√

100+12
√
69

6
+

3
√

100−12
√
69

6
− 1

3
0.9105257

Table 4. Values of βq in theorem 15

For fixed q, q ⩾ 5, the following asymptotics holds as k → ∞:

ιq, 2k ∼ αq,0 · γq
2k

q ,

ιq, 2k+1 ∼ αq,1 · γq
2k+1

q ,

where constants αq,0 and αq,1 satisfy inequality αq,0 > αq,1 and are defined by

relations

αq,0 =

(
1−

(
lim
k→∞

xq, 2k

)−1
)1/(q2−1)

,

αq,1 =

(
1−

(
lim
k→∞

xq, 2k+1

)−1
)1/(q2−1)

.

Proof. Obviously, ιq, 0 = 2, ιq, 1 = 2q + 1. Formally setting ιq,−1 = 1, for k ⩾ 1 we

have ιk = ιqq, k−1 + ιq
2

q, k−2 . Consider sequence {ιq, k/ιqq, k−1}∞k=0 . Since ιq, 0/ι
q
q,−1 = 2,

and for k ⩾ 1 equalities hold

ιq, k
ιqq, k−1

=
ιqq, k−1 + ιq

2

q, k−2

ιqq, k−1

= 1 +

(
ιq, k−1

ιqq, k−2

)q

,
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sequence {ιq, k/ιqq, k−1}∞k=0 coincides with {xq,k}∞k=0 .

Let yq, k = ln ιq, k . For k ⩾ 1 we have

yq, k = ln
(
ιqq, k−1 + ιq

2

q, k−2

)
=

= q ln ιq, k−1 + ln
(
1 + ιq

2

q, k−2/ι
q
q, k−1

)
=

= qyk−1 + ln
(
1 + x−q

q, k−1

)
=

= qyq, k−1 + ln xq, k.

From this by induction we conclude that

yq, k = qkyq, 0 +
k∑

j=1

qk−j ln xq, j =
k∑

j=0

qk−j ln xq, j. (16)

Let’s denote rq(k) =
∑∞

j=1 q
−j ln xq, k+j . Let’s transform the sum in the right part

of (16) as follows:

k∑
j=0

qk−j ln xq, j =
∞∑
j=0

qk−j ln xq, j −
∞∑

j=k+1

qk−j ln xq, j =

= qk
∞∑
j=0

q−j ln xq, j −
∞∑
j=1

q−j ln xq, k+j =

= qk ln γq − rq(k).

(17)

From (16) and (17) follows

ιq, k = exp
(
qk ln γq − rq(k)

)
= γq

k

q · e−rq(k). (18)

For q ∈ {2, 3, 4} from lemma 13, due to monotonic convergence of xq, k , follows that

as k → ∞

rq(k) → (ln ξq) ·
∞∑
j=1

q−j =
ln ξq
q − 1

. (19)

From (18) and (19) for q ∈ {2, 3, 4} follows the asymptotics

ιq, k ∼ γq
k

q · (ξ−1
q )1/(q−1).

It remains to note that ξq is a root of equation x = 1 + x−q , and therefore value

ξ−1
q is a root of equation xq+1 + x − 1 = 0. For q ∈ {2, 3, 4} the latter equation is
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solvable in radicals. Solving it, and setting

βq = (ξ−1
q )1/(q−1),

we obtain the theorem’s statement for the case q ⩽ 4.

Now let’s consider the case q ⩾ 5. We have

rq(2k) =
∞∑
j=1

q−j ln xq, 2k+j =

= q ·
∞∑
j=1

q−2j ln xq, 2k+2j−1 +
∞∑
j=1

q−2j ln xq, 2k+2j.

From this and from lemma 13 follows that as k → ∞

rq(2k) → (q ln ηq + ln ζq) ·
∞∑
j=1

q−2j =
ln(ηqqζq)

q2 − 1
. (20)

Similarly it is proved that as k → ∞

rq(2k + 1) →
ln(ζqqηq)

q2 − 1
. (21)

From obvious equalities ηq = 1 + ζ−q
q and ζq = 1 + η−q

q follows that

(ηqqζq)
−1 = 1− ζ−1

q , (ζqqηq)
−1 = 1− η−1

q . (22)

From (18), (20), (21), (22) follows the theorem’s statement for q ⩾ 5.
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Chapter 2. Estimates of the Number of Maximal
Independent Sets in Graphs of Fixed Diameter

We establish a lower bound on the number of maximal independent sets in graphs
of fixed diameter, as well as an upper bound on the number of maximal independent
sets in trees of fixed diameter. We provide a complete description of the structure
of graphs on which these bounds are achieved.

2.1 Basic Concepts

Let d, n ∈ N, and let d < n. Any tree of diameter d on n vertices having
the minimum (maximum) number of m.i.s. among all trees with the given number
of vertices and diameter will be called (n, d)m.i.s.–minimal (respectively, (n, d)m.i.s.–
maximal). The distance from a vertex v ∈ V (G) in graph G to a subgraph G′ will
be called the minimum of the distances from v to vertices in V (G′).

Let U = {u1, . . . , ud−1}, V = {v1, . . . , vp}, W = {w1, . . . , wq}. Let us denote
by Bd,p,q a tree of diameter d on the vertex set U ∪ V ∪W , such that its subtrees
induced by sets {u1} ∪ V , {ud−1} ∪W and U represent stars K1,p , K1,q and path
Pd−1 respectively. Trees Bd,p,q are called brooms (see, for example, [39]).

A pendant edge in a graph will mean any edge incident to a pendant vertex
(vertex of degree 1).

We will say that graph G′ is obtained by subdivision of edge e = (v1, v2) of graph
G if V (G′) = V (G) ∪ {v′} and E(G′) = (E(G) \ {e}) ∪ {{v1, v′}, {v2, v′}}.

Let us denote by ψn the number of m.i.s. in a path on n vertices. The se-
quence ψn obviously satisfies the relation ψn = ψn−2 + ψn−3 and initial conditions
ψ0 = ψ1 = 1, ψ2 = 2. Values of numbers ψn for small n are given in table 5.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ψn 1 1 2 2 3 4 5 7 9 12 16 21 28 37 49 65

Table 5. Values of ψn

40
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A graph G will be called quasi-path if the set V (G) admits a partition

V (G) = V0 ⊔ V2 ⊔ . . . ⊔ Vd

with the following properties:

1. For any k, 2 ⩽ k ⩽ d, and any i, 0 ⩽ i ⩽ d − k , there are no edges in G of
the form {u, u′}, where u ∈ Vi , u′ ∈ Vi+k .

2. For each i, 0 ⩽ i ⩽ d − 1, the subgraph of graph G induced by set Vi ∪ Vi+1

is a complete bipartite graph with parts Vi and Vi+1 .

Any partition of the vertex set of a quasi-path having the properties specified above
will be called proper.

In what follows, we will use without special mention the fact that the number of
m.i.s. in a graph is not less than the number of m.i.s. in any of its induced subgraphs.

Proposition 13. Let T be an arbitrary tree. Let T have a vertex adjacent to two

or more leaves, and let u be one of these leaves. Then for tree T ′ obtained from T

by deleting vertex u, the equality iM(T ′) = iM(T ) holds.

Proof. It suffices to note that if u1, . . . , ur are leaves having a common neighbor in

T , then in any m.i.s. in T either all vertices u1, . . . , ur are included simultaneously,

or none of them is included.

Lemma 14. For any n and d such that 4 ⩽ d < n, in (n, d)m.i.s.–maximal trees

each vertex is adjacent to at most one leaf.

Proof. Suppose that d ⩾ 4 and there exists a (n, d)m.i.s.–maximal tree T in which

there is a vertex adjacent to two or more leaves. After removing one of these leaves,

we obtain a tree T ′ for which, by statement 13, the equality iM(T ′) = iM(T ) holds.

Moreover, obviously, diam(T ′) = diam(T ) and n(T ′) = n(T ) − 1. In any tree of

diameter at least four, there exists a vertex that is either not adjacent to any leaves

or is a leaf not lying on the diametral path. Let v be such a vertex in tree T ′ . By

adding a new leaf vertex u to T ′ and connecting it to v , we obtain a tree T ′′ for which

n(T ′′) = n(T ), diam(T ′′) = diam(T ) and iM(T ′′) > iM(T ). But this contradicts the

choice of T as a (n, d)m.i.s.–maximal tree. This contradiction completes the proof.
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2.2 Lower Bounds on the Number of Maximal Independent
Sets in Graphs of Fixed Diameter

Proposition 14. Every quasi-path graph of diameter d contains ψd+1 maximal

independent sets.

Proof. Cases d ⩽ 2 are trivial. Let d ⩾ 3. Let G be a quasi-path graph of diameter

d, and V1⊔ . . .⊔Vd+1 be a proper partition of its vertex set. Let Pd+1 = v1v2 . . . vd+1

be a path on (d + 1) vertices. Note that for each i, 1 ⩽ i ⩽ d+ 1, and each

A ∈ IM(G), one of the equalities A∩ Vi = ∅, A∩ Vi = Vi holds. Therefore, to each

m.i.s. A in G we can bijectively associate a m.i.s. A′ in path v1v2 . . . vd+1 by the

rule vi ∈ A′ ⇔ Vi ∩ A = Vi . Consequently, iM(G) = iM(Pd+1) = ψd+1 .

Theorem 16. For any d, d ⩾ 4, and for any graph G of diameter d, the inequality

iM(G) ⩾ ψd+1 holds, turning into equality only for quasi-path graphs.

Proof. Let G be an arbitrary graph of diameter d. The inequality iM(G) ⩾ ψd+1

immediately follows from the fact that G contains an induced path on (d+1) vertices

(such is, for example, any diametral path in G).

Suppose that iM(G) = ψd+1 , and let us show that in this case G is a quasi-path

graph. Consider arbitrary vertices v0, vd ∈ V (G) at distance d. Let P = v0v1 . . . vd

be a diametral path in G. We will assume that G has vertices not belonging to P .

Let u be an arbitrary vertex of graph G at distance 1 from path P (such a vertex

exists due to the connectivity of G and strict inclusion V (P ) ⊊ V (G)). Without loss

of generality, we will assume that the distance from vertex vi of path P adjacent

to u to vertex vd is not less than the distance to vertex v0 . Consider the subgraph

Gu of graph G induced by set V (P ) ∪ {u}. Note that if (u, vi) ∈ E(G) for some

vertex vi ∈ V (P ), then {{u, vi−k}, {u, vi+k}} ∩E(G) = ∅ for any k ⩾ 2 (otherwise

this would contradict the diametrality of path P ). From this it follows that Gu is

isomorphic to one of the graphs in Fig. 4a–4i. It is easy to show that for each of the

graphs Ĝ in Fig. 4d–4i with d ⩾ 4, strict inequalities iM(Ĝ) > iM(P ) = ψd+1 hold

(since for each m.i.s. A in P there exists such m.i.s. A′ ∈ Ĝ that A = A′ ∩ V (P ),
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Figure 4. To the proof of theorem 16

but one can specify such m.i.s. A′ in Ĝ that A′ ∩ V (P ) is not a m.i.s. in P ). From

this and from the assumption iM(G) = ψd+1 it follows that Gu must be isomorphic

to one of the graphs in Fig. 4a–4c.

Let us now show that any vertex from V (G) \ V (P ) is at distance 1 from P .

Suppose this is not the case. Then in G there exists a vertex w at distance 2 from P .

Let u be a vertex adjacent to w at distance 1 from P . The subgraph Gu,w of graph

G induced by set V (P ) ∪ {u,w} is isomorphic to one of the graphs in Fig. 5a–5c.

But then, as can be easily shown, iM(Gu,w) > iM(P ), and thus iM(G) > ψd+1 — a

Figure 5. To the proof of theorem 16

contradiction with the choice of G.

From the above reasoning it follows that for any diametral path P in G and any

vertex u ∈ V (G) \ V (P ) the subgraph Gu of graph G induced by set V (P ) ∪ {u}

is isomorphic to one of the graphs in Fig. 4a–4c. Let us construct sets V0, . . . , Vd as

follows. Set Vi for 1 ⩽ i ⩽ d − 1 contains exactly those vertices u from V (G) for

which {{vi−1, u}, {vi+1, u}} ⊆ E(G). Set V0 consists of all those vertices u ∈ V (G)

for which {v1, u} ∈ E(G) and {v3, u} /∈ E(G). Set Vd consists of all those vertices

u ∈ V (G) for which {vd−1, u} ∈ E(G) and {vd−3, u} /∈ E(G).

Let us show that G is a quasi-path graph, and {Vi}di=0 is the corresponding prop-
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er partition of its vertices. Note that for the constructed sets Vi for each i, 0 ⩽ i ⩽ d,

we have vi ∈ Vi . Moreover, any vertex u ∈ V (G) \ V (P ) belongs to exactly one of

the sets Vi because graph Gu is isomorphic to one of the graphs in Fig. 4a–4c.

Therefore, sets {Vi}di=0 form a partition of set V (G). Note that if u′ and u′′ are

different vertices from the same set Vi , then {u′, u′′} /∈ E(G) (otherwise the sub-

graph of G induced by set (P (V ) \ {vi}) ∪ {u′, u′′} would be isomorphic to one of

the graphs in Fig. 4g–4i, and we would have iM(G) > ψd+1). Consequently, each set

Vi is independent in G.

Now let us show that {u′, u′′} /∈ E(G) for any vertices u′ ∈ Vi and u′′ ∈ Vj

with |i − j| ⩾ 2. If 2 ⩽ i + 1 < j < d, then the existence of edge {u′, u′′} in G

would contradict the fact that v0, vd are at distance d. For the same reason, when

d ⩾ 6, G cannot have an edge {u′, u′′} such that u′ ∈ V0, u
′′ ∈ Vd . If d ∈ {4, 5} and

{u′, u′′} ∈ E(G) for some u′ ∈ V0, u
′′ ∈ Vd , then G contains an induced subgraph

isomorphic to the graph in Fig. 6a (for d = 4) or Fig. 6b (for d = 5), from which

follows iM(G) > ψd+1 , contradicting the choice of G. It remains to consider the

Figure 6. To the proof of theorem 16

case when {u′, u′′} ∈ E(G) for vertices u′ ∈ Vi, u
′′ ∈ Vd , where 1 ⩽ i ⩽ d − 2. For

i ⩽ d− 4 we get a contradiction with the fact that the distance between v0 and vd

equals d. For i = d − 2 graph G would contain an induced subgraph isomorphic

to the graph in Fig. 6c, the number of m.i.s. in which is strictly greater than ψd+1 .

Similarly, for i = d− 3 graph G would contain an induced subgraph isomorphic to

one of the graphs in Fig. 6d,6e, and the strict inequality iM(G) > ψd+1 would hold.

It only remains to note that {u′, u′′} ∈ E(G) for any u′, u′′ such that u′ ∈ Vi,

u′′ ∈ Vi+1 (otherwise G would have an induced subgraph isomorphic to one of

the graphs in Fig. 7, and inequality iM(G) > ψd+1 would hold). Thus, G has all
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Figure 7. To the proof of theorem 16

properties of a quasi-path graph with proper partition {Vi}di=0 , and the theorem is

proved.

Corollary. Let d ⩾ 3 and let tree T be (n, d)m.i.s.–minimal. Then T ≃ Bd,p,q for

some natural numbers p, q .

The following statement is proved completely analogously to theorem 16.

Proposition 15. For any graph G of diameter 2, inequality iM(G) ⩾ 2 holds,

turning into equality only for complete bipartite graphs. For any graph G of diameter

3, inequality iM(G) ⩾ 3 holds, with equality achieved only if set V (G) can be

partitioned into subsets V ′ ⊔ V0 ⊔ V1 ⊔ V2 ⊔ V3 (set V ′ may be empty) such that the

subgraph induced by set V (G) \ V ′ is quasi-path with proper partition {Vi}3i=0 , set

V ′ is independent in G, and

V ′ × (V1 ∪ V2) ⊂ E(G),

(V ′ × (V0 ∪ V3)) ∩ E(G) = ∅.

2.3 Upper Bounds on the Number of Maximal Independent
Sets in Trees of Fixed Diameter

Let us introduce several notation for trees of special types. Let B̃4,n denote the
tree obtained from star K1,n−1

2
by subdividing all edges. Let B̃′

4,n denote the tree
obtained from star K1,n2

by subdividing n−2
2 edges. Trees B̃4,n and B̃′

4,n are shown
in Fig. 8.

Figure 8. Trees B̃4,n (a) and B̃′
4,n (b)

Let B̃′
5,n denote the tree obtained from broom B3,n−5

2 ,2 by subdividing all pendant
edges except one edge incident to the vertex of degree 3. Let B̃5,n,p denote the tree
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obtained from B3,p,n−5−2p
2

by subdividing all pendant edges. Let B̂′
5,n,p denote the

tree obtained by attaching a pendant vertex to that central vertex of tree B̃5,n−1,p

which has degree (p+1). Let B̂′′
5,n,p denote the tree obtained by attaching a pendant

vertex to each central vertex of tree B̃5,n−2,p . Trees B̃′
5,n , B̃5,n,p , B̂′

5,n,p and B̂′′
5,n,p

are shown in Fig. 9.

Figure 9. Trees B̃′
5,n (a), B̃5,n,p (b), B̂′

5,n,p (c) and B̂′′
5,n,p (d)

Let B̂6,n,p denote the tree obtained from B4,p,n−3−2p
2

by subdividing all pendant
edges. Let B̃′

6,n,p denote the tree obtained by attaching a pendant vertex to the
central vertex of tree B̂6,n−1,p . Let B̂6,n,p,q denote the tree obtained by attaching q

pendant vertices to the center of B4,p,n−3−2p−2q
2

and then subdividing all pendant
edges. Let B̂′

6,n,p,q denote the tree obtained by attaching a pendant vertex to the
central vertex of tree B̂6,n−1,p,q . Trees B̂6,n,p,q , B̂′

6,n,p,q , B̂6,n,p and B̃′
6,n,p are shown

in Fig. 10.

Figure 10. Trees B̂6,n,p,q (a), B̂′
6,n,p,q (b), B̂6,n,p (c) and B̃′

6,n,p (d)

Let B̃′
7,n denote the tree obtained from B5,n−7

2 ,2 by subdividing all pendant edges
except one edge incident to the vertex of degree 3. Let B̃7,n denote the tree obtained
from B5,p,n−4−2p

2
by subdividing all pendant edges. Let B̂7,n,p,q,r denote the tree ob-

tained by attaching (q+1) and r pendant vertices respectively to the central vertices
of tree B5,p,n−5−2p−2q−2r

2
adjacent to vertices of degree (p + 1) and n−3−2p−2q−2r

2 , and
then subdividing all pendant edges except one incident to the central vertex adjacent
to vertices of degree (p + 1) and (r + 2). Trees B̃′

7,n , B̃7,n and B̂7,n,p,q,r are shown
in Fig. 11.

Let B̂8,n denote the tree obtained from B̃4,n−4 by double subdivision of two
pendant edges. Let B̂′

8,n denote the tree obtained by attaching a pendant vertex

[This is an automated translation of the original manuscript from Russian into English]



47

Figure 11. Trees B̃′
7,n (a), B̃7,n (b) and B̂7,n,p,q,r (c)

to the center of tree B̂8,n−1 . Trees B̂8,n and B̂′
8,n are shown in Fig. 12. Let B̂9,n,p

denote the tree obtained from tree B̃5,n−4,p+1 by double subdivision of two pendant
edges located at opposite ends of the tree. Let B̂′

9,n,p denote the tree obtained by
attaching a pendant vertex to the central vertex of degree (p + 2) of tree B̂9,n−1,p .
Let B̂′′

9,n,p denote the tree obtained by attaching pendant vertices to each of the
central vertices of tree B̂9,n−2,p . Trees B̂9,n,p , B̂′

9,n,p and B̂′′
9,n,p are shown in Fig. 12.

Figure 12. Trees B̂8,n (a), B̂′
8,n (b), B̂9,n,p (c), B̂′

9,n,p (d) and B̂′′
9,n,p (e)

Let B̃′
6 denote the tree obtained from K1,3 by double subdivision of two edges.

Let B̃′
8 denote the tree obtained by attaching a pendant vertex to the fourth from

end vertex of path P9 . Let B̃d denote the tree obtained by attaching a pendant
vertex to the third from end vertex of path Pd+1 . Trees B̃′

6 , B̃′
8 and B̃d are shown

in Fig. 13.

Figure 13. Trees B̃∗
6 (a), B̃∗

8 (b) and B̃′′
n (c)

Let B̌d,n denote the tree obtained from Bd−2,n−d+1
2 ,1 by subdividing all pendant

edges. Let B̌′
d,n denote the tree obtained by attaching a pendant vertex to that

vertex of tree B̌d,n−1 which is not adjacent to pendant vertices but is adjacent to a
vertex of degree n−d

2 . Trees B̌d,n and B̌′
d,n are shown in Fig. 14.
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Figure 14. Trees B̌d,n (a) and B̌′
d,n (b)

Finally, let B̂∗
d,k denote the tree obtained by attaching a pendant vertex to the

k -th vertex of the diametral path of tree B̌d,d+3 , counting from that end of the
diametral path which is furthest from the vertex of degree 3. Trees B̂∗

d,k for k = 3,
k = 4 and k ⩾ 5 are shown in Fig. 15.

Figure 15. Trees B̂∗
d,k with k = 3 (a), k = 4 (b) and k ⩾ 5 (c)

For natural numbers n, d such that 4 ⩽ d ⩽ n− 1, define the value M(n, d):

M(n, d) =



ψd−1 + (2(n−d+1)/2 − 1)ψd−2, for d ⩾ 4, n− d = 2k + 1, k ⩾ 0,

ψd−2 + ψd, for d ⩾ 4, n− d = 2,

2(n−d)/2ψd−1, for d ⩾ 5, d ̸= 7, n− d = 2k ⩾ 4,

2(n−d)/2ψd−1 + 1, for d ∈ {4, 7}, n− d = 2k ⩾ 4.
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Proposition 16.
1. For d ⩾ 4 and any n, n ⩾ d+3, such that 2 ∤ (n−d), inequality M(n, d) > M(n, d+1)

holds.

2. For d ⩾ 4 and any n, n ⩾ d+2, such that 2 | (n−d), inequality M(n, d) ⩽M(n, d+1)

holds, with M(n, d) =M(n, d+ 1) only if d = 4.

3. For d ⩾ 4 and any n, n ⩾ d + 3, inequality M(n, d) ⩾ M(n, d + 2) holds, with

equality M(n, d) =M(n, d+ 2) occurring only if both d = 5 and n is even.

Proof.

1. Let 4 ⩽ d ⩽ n− 3 and 2 ∤ (n− d). If n = d+ 3, then

M(n, d)−M(n, d+ 1) = 2ψd−2 − ψd−1 > 0.

If n ⩾ d+ 5 and d ̸= 6, then

M(n, d)−M(n, d+ 1) = ψd−1 − ψd−2 + 2(n−d−1)/2(2ψd−2 − ψd) ⩾
⩾ ψd−1 + 7ψd−2 − 4ψd > 0.

If n ⩾ d+ 5 and d = 6, then M(n, d)−M(n, d+ 1) = 2(n−7)/2 > 0.

2. For d = 4 and even n equality M(n, d) = M(n, d + 1) is easily verified. Let

5 ⩽ d ⩽ n− 2 and 2 | (n− d). If n = d+ 2, then

M(n, d+ 1)−M(n, d) = ψd−1 − ψd−2 > 0.

If d ̸= 7 and n ⩾ d+ 4, then

M(n, d+ 1)−M(n, d) = ψd − ψd−1 > 0.

If d = 7 and n ⩾ d+ 4, then M(n, d+ 1)−M(n, d) = 1 > 0.

3. For 4 ⩽ d ⩽ n− 3 and 2 ∤ (n− d) we have

M(n, d)−M(n, d+ 2) = (2(n−d−1)/2 − 1)(2ψd−2 − ψd),

from which it follows that M(n, 5) = M(n, 7), and M(n, d) > M(n, d + 2) for

d ̸= 5.
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If d = 4 and n is even, then M(n, d)−M(n, d+ 2) = 1 > 0. Let 5 ⩽ d ⩽ n− 3.

If n = d + 4, then M(n, d) −M(n, d + 2) ⩾ 3ψd−1 − 2ψd > 0. If n ⩾ d + 6 and

2 | (n− d), then

M(n, d)−M(n, d+ 2) ⩾ 2(n−d−2)/2(2ψd−1 − ψd+1)− 1 > 0.

From statement 16 the following fact follows directly.

Lemma 15. If 4 ⩽ d′ < d′′ ⩽ n− 1, then

1. Argmax
d′⩽d⩽d′′

M(n, d) =


{d′ + 1}, for d′ ⩾ 5, 2 | (n− d′),

{4, 5, 7} ∩ [d′, d′′], for d′ ⩽ 5, 2 | n,

{d′}, for d′ ⩾ 4, d′ ̸= 5, 2 ∤ (n− d′).

2. max
d′⩽d⩽d′′

M(n, d) =


M(n, d′ + 1), for 2 | (n− d′),

M(n, d′), for 2 ∤ (n− d′).

3. max
d⩾d′

M(n, d) ⩽M(n, 4).

Lemma 16. For n− 2 = d ⩾ 5 any (n, d)m.i.s.–maximal tree T is isomorphic to one

of the trees B̃∗
6 , B̃∗

8 , B̃′′
n . Moreover, iM(T ) =M(n, d).

Proof. Let us prove the lemma by induction on d. For 5 ⩽ d ⩽ 8 the statement of

the lemma is verified by enumeration. Let d ⩾ 9 and assume the lemma holds for

trees of diameter not exceeding (d− 1). Let T be a (d+2, d)m.i.s.–maximal tree. Let

v be the only vertex not lying on the diametral path of T . Denote by u that end

vertex of the diametral path which is at the greatest distance from v . Let u′ be the

vertex adjacent to u, and u′′ be the vertex at distance 2 from u. Then, using the

induction hypothesis, we can estimate iM(T ):

iM(T ) = iM(T \ {u, u′}) + iM(T \ {u, u′, u′′}) ⩽
⩽M(n− 2, d− 2) +M(n− 3, d− 3) =

=M(n, d),
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with equality iM(T ) = M(n, d) possible only if trees T \ {u, u′} and T \ {u, u′, u′′}

are isomorphic to some of the trees B̃∗
6 , B̃∗

8 , B̃′′
n−2 , B̃′′

n−3 . But then tree T itself is

isomorphic to tree B̃′′
n .

Lemma 17. Any (n, 5)m.i.s.–maximal tree is isomorphic to one of the trees B̃′
5,n ,

B̃5,n,p (for some p).

Proof. Let T be an arbitrary (n, 5)m.i.s.–maximal tree. If tree T is isomorphic to one

of the trees B̃′
5,n or B̃5,n,p , then, as is easily verified, iM(T ) = M(n, 5). Suppose T

is not isomorphic to any of the trees B̃′
5,n , B̃5,n,p . Then from lemma 14 it follows

that only the following cases are possible:

1. T has the form B̂′
5,n,p , where n ⩾ 9 and p ⩾ 2. Then

iM(T ) = 2(n−5)/2(2 + 21−p) < 3 · 2(n−5)/2 =M(n, 5).

2. T has the form B̂′′
5,n,p , where n ⩾ 8. Then

iM(T ) = 2(n−4)/2 + 2p + 2(n−2p−4)/2 ⩽ 2 + 3 · 2(n−6)/2 < 1 + 4 · 2(n−6)/2 =M(n, 5).

Thus, in both cases considered we get a contradiction with the (n, 5)m.i.s.–maximality

of T , which completes the proof of the lemma.
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It is obvious that any tree of diameter 1 or 2 contains two m.i.s., and any tree
of diameter 3 contains three m.i.s. For d ⩾ 4, a complete description of (n, d)m.i.s.–
maximal trees is given by the following theorem.

Theorem 17. For 4 ⩽ d ⩽ n − 2, any (n, d)m.i.s.–maximal tree T satisfies the

equality iM(T ) = M(n, d), and the tree T itself is isomorphic to one of the trees

listed in the table:

d (n− d) extremal trees

4 2k + 1 (k ⩾ 1) B̃4,n

4 2k (k ⩾ 1) B̃′
4,n

5 2k + 1 (k ⩾ 1) B̃5,n,p (1 ⩽ p ⩽ n−4
2 )

5 2k (k ⩾ 1) B̃′
5,n

6 2k + 1 (k ⩾ 1) B̌6,n

6 2 B̃∗
6 , B̃′′

8

6 2k (k ⩾ 2) B̃′
6,n,p (1 ⩽ p ⩽ n−6

2 )

7 2k + 1 (k ⩾ 1) B̃7,n (1 ⩽ p ⩽ n−6
2 )

7 2k (k ⩾ 1) B̃′
7,n

8 2k + 1 (k ⩾ 1) B̌8,n

8 2 B̃∗
8 , B̃′′

10

8 2k (k ⩾ 2) B̌′
8,n

⩾ 9 2k + 1 (k ⩾ 1) B̌d,n

⩾ 9 2 B̃′′
n

⩾ 9 2k (k ⩾ 2) B̌′
d,n

Proof. The validity of the theorem for d = 4 follows directly from lemma 14, and

for d = 5 it is ensured by lemma 17. Moreover, for n = d+ 2, the statement of the

theorem follows from lemma 16.

Let d ⩾ 6, n ⩾ d + 3, and assume the theorem holds for all pairs (n′′, d) such

that n′′ < n, as well as for all pairs (n′, d′) such that d′ ⩽ d− 1. Let us prove that

then the statement of the theorem is also valid for the pair (n, d). Let T be an

arbitrary (n, d)m.i.s.–maximal tree, and P be an arbitrary diametral path in T . Let

us show that for any vertex v not lying on path P , the minimum distance from v
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to vertices of P does not exceed 2. Suppose the contrary and show that under this

assumption, the strict inequality M(n, d)− iM(T ) > 0 holds, which contradicts the

choice of T . From lemma 14 it follows that only the following cases are possible:

A. Tree T has the form shown in Fig. 16a, where diam(T ′) = d and 1 ⩽ t ⩽ n−d−2
2 .

In this case M(n, d)− iM(T ) ⩾ D1(n, d), where

D1(n, d) =M(n, d)−M(n− 2, d)−M(n− 2t− 1, d) · 2t−1.

Figure 16. To the proof of theorem 17

Let us consider several subcases:

A1. n = d+ 4. Then t = 1 and D1(n, d) ⩾ 4ψd−1 − ψd−2 − ψd − ψd+1 > 0.

A2. n = d+ 2k , where k ⩾ 3. Then

D1(n, d) = 2(n−d)/2ψd−1 − 2(n−d−2)/2(ψd−1 + ψd−2)− 2t−1(ψd−1 − ψd−2) ⩾
⩾ 2(n−d)/2ψd−1 − 2(n−d−2)/2(ψd−1 + ψd−2)−

−2(n−d−4)/2(ψd−1 − ψd−2) = 2(n−d−4)/2(ψd−1 − ψd−2) > 0.

A3. n = d+ 2k + 1, where k ⩾ 2, and t = n−d−3
2 . Then

D1(n, d) = 2(n−d−5)/2(3ψd−2 − ψd) > 0.

A4. n = d+ 2k + 1, where k ⩾ 3, and t ⩽ n−d−5
2 . Then

D1(n, d) ⩾ 2(n−d−7)/2(8ψd−2 − 4ψd−1 − 1) > 0.

B. Tree T has the form shown in Fig. 16b, where diam(T ′) = d and 1 ⩽ t ⩽ n−d−3
2 .

In this case M(n, d)− iM(T ) ⩾ D2(n, d), where

D2(n, d) =M(n, d)−M(n− 2, d)−M(n− 2t− 2, d) · 2t−1.
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Let us consider several subcases:

B1. n = d+ 2k + 1, where k ⩾ 2. Then

D2(n, d) = 2(n−d−3)/2ψd−2 − 2t−1(ψd−1 − ψd−2) ⩾
⩾ 2(n−d−3)/2ψd−2 − 2(n−d−5)/2(ψd−1 − ψd−2) =

= 2(n−d−5)/2(3ψd−2 − ψd−1) > 0.

B2. n = d+ 2k , where k ⩾ 3 and t = n−d−4
2 . Then

D2(n, d) = 2(n−d−6)/2(4ψd−1 − ψd − ψd−2) > 0.

B3. n = d+ 2k , where k ⩾ 3 and t ⩽ n−d−6
2 . Then

D2(n, d) > 2(n−d−4)/2(ψd−1 − 1) > 0.

Thus, in any case, the existence of vertices at a distance greater than two from

path P contradicts the (n, d)m.i.s.–maximality of T . From this and from lemma 14 it

follows that every vertex in T is at a distance of no more than 2 from the diametral

path, and any vertex of T is adjacent to at most one leaf.

Let us separately consider the cases when tree T has diameter 6 and 7.

C. diam(T ) = 6. Suppose tree T is not isomorphic to any of the trees B̌6,n , B̃′
6,n,p .

Then the following cases are possible:

C1. T has the form shown in Fig. 16b, where 1 ⩽ t ⩽ n−6
2 and diam(T ′) ⩾ 3. If T ′

has exactly four vertices, then

iM(T ) = 2 + 3 · 2(n−6)/2 < M(n, 6).

Let T ′ have at least 5 vertices. Then from lemma 15 and the induction hypothesis

it follows that

M(n, 6)− iM(T ) ⩾M(n, 6)− max
d∈{5,6}

M(n− 2, d)− 2t−1M(n− 2t− 2, 4).

If n is even, then maxd∈{5,6}M(n− 2, d) =M(n− 2, 5) and

M(n, 6)− iM(T ) ⩾M(n, 6)−M(n− 2, 5)− 2t−1M(n− 2t− 2, 4) ⩾
⩾ 2(n−8)/2 − 1 > 0.
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If n is odd, then maxd∈{5,6}M(n− 2, d) =M(n− 2, 6) and

M(n, 6)− iM(T ) ⩾M(n, 6)−M(n− 2, 6)− 2t−1M(n− 2t− 2, 4) =

= 2(n−7)/2 > 0.

C2. T is either isomorphic to one of the trees B̂6,n,p,q , B̂′
6,n,p,q , or is isomorphic to

tree B̂6,n,p where 2 ⩽ p ⩽ n−7
2 . From the table below, it is evident that in all these

cases iM(T ) < M(n, 6).

T iM(T )
lower bound

for (M(n, 6)− iM(T ))

B̂6,n,p,q 2(n−3)/2 + 2p + 2(n−3−2p−2q)/2 − 1 2(n−7)/2

B̂′
6,n,p,q 2(n−4)/2 + 2(n−4−2q)/2 2(n−6)/2

B̂6,n,p 2(n−3)/2 + 2p + 2(n−3−2p)/2 − 1 2(n−7)/2 − 2

D. diam(T ) = 7. The following subcases are possible:

D1. T has the form shown in Fig. 16b, where 1 ⩽ t ⩽ n−7
2 and diam(T ′) ⩾ 4. Then

from lemma 15 and the induction hypothesis it follows that

M(n, 7)− iM(T ) ⩾M(n, 7)− max
d∈{6,7}

M(n− 2, d)− 2t−1M(n− 2t− 2, 4).

If n is even, then maxd∈{6,7}M(n− 2, d) =M(n− 2, 7) and

M(n, 7)− iM(T ) ⩾M(n, 7)−M(n− 2, 7)− 2t−1M(n− 2t− 2, 4) ⩾ 3 · 2(n−10)/2 > 0.

If n is odd, then maxd∈{6,7}M(n− 2, d) =M(n− 2, 6) and

M(n, 7)− iM(T ) ⩾M(n, 7)−M(n− 2, 6)− 2t−1M(n− 2t− 2, 4) = 0,

where from lemma 15 and the induction hypothesis it follows that the equality

M(n, 7)− iM(T ) =M(n, 7)−M(n− 2, 6)− 2t−1M(n− 2t− 2, 4) is possible only if

t = 1 and tree T ′ has the form B̃4,n′ , which is possible only if T is isomorphic to

tree B̃′
7,n .

D2. T has the form shown in Fig. 16a, where 1 ⩽ t ⩽ n−6
2 . If n is even, then from

the induction hypothesis and lemma 15 we obtain

iM(T ) ⩽M(n− 2, 5) + 2t−1M(n− 2t− 1, 4) =M(n, 7),
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where the equality iM(T ) = M(n, 7) is possible only if subtree T ′ of tree T is

isomorphic to tree B̃4,n′ , and thus tree T itself is isomorphic to tree B̃7,n .

Now suppose that n is odd, and T is not isomorphic to tree B̃′
7,n , and also cannot be

represented in the form described in item D1. Then T is isomorphic to tree B̂7,n,p,q,r

for some q, r ⩾ 0, and the following relations hold

iM(T ) = 2(n−5)/2 + 2p+q + 2(n−2q−5)/2 ⩽ 5 · 2(n−7)/2 < M(n, 7).

All cases where d = diam(T ) ⩽ 7 have been examined above, and for the re-

mainder of the theorem’s proof we will assume that d ⩾ 8. Let us fix some diametral

path P in tree T . Denote by w, w′, u, u′, u′′ the consecutive vertices of P , where

w is an end vertex of P . In doing so, we will assume that if w̃, w̃′, ũ, ũ′, ũ′′ are the

vertices of P , taken in order starting from the end vertex w̃ , opposite to w , then

the sequence of degrees

(degw, degw′, deg u, deg u′, deg u′′)

is lexicographically not less than the sequence of degrees (deg w̃, deg w̃′, deg ũ, deg ũ′, deg ũ′′).

Let us consider several cases:

1. Vertex u in T is adjacent to t paths of two vertices, where t ⩾ 2, and is not

adjacent to any leaves. In this case tree T has the form shown in Fig. 16a, where

diam(T ′) ⩾ d− 3. We have

iM(T ) ⩽M(n− 2, d) + 2t−1 · max
d′⩾d−3

M(n− 2t− 1, d′). (23)

1.1. If 2 ∤ (n− d), then from lemma 15 it follows that

max
d′⩾d−3

M(n− 2t− 1, d′) ⩽M(n− 2t− 1, d− 3).

Then (23) implies

M(n, d) −iM(T ) ⩾M(n, d)−M(n− 2, d)− 2t−1 ·M(n− 2t− 1, d− 3) =

= 2(n−d−1)/2ψd−2 − 2(n−d+1)ψd−5 − 2t−1(ψd−4 − ψd−5) ⩾
⩾ 2(n−d−1)/2ψd−2 − 2(n−d+1)/2ψd−5 − 2(n−d−1)/2(ψd−4 − ψd−5) = 0,
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where the equality iM(T ) =M(n, d) occurs only in the case t = n−d+1
2 , that is, only

if tree T has the form B̌d,n .

1.2. If 2 | (n− d), then from lemma 15 it follows that

max
d′⩾d−3

M(n− 2t− 1, d′) ⩽M(n− 2t− 1, d− 2).

Then two situations are possible.

1.2.1. n ⩾ d+ 6. Then

M(n, d)− iM(T ) ⩾M(n, d)−M(n− 2, d)− 2t−1 ·M(n− 2t− 1, d− 2) =

= (2(n−d−2)/2 − 2t−1)(ψd−3 − ψd−4) ⩾ 0,

where the equality iM(T ) =M(n, d) is possible only if t = n−d
2 and diam(T ′) = d−2.

But then tree T has the form B̌′
d,n .

1.2.2. n = d+4. Then tree T has the form B̂∗
d,k for k ⩾ 3. If T has the form B̂∗

d,3 ,

then

M(n, d)− iM(T ) = 4ψd−1 − 2(ψd + ψd−5)− ψd−3 > 0.

If T has the form B̂∗
d,4 , then

M(n, d)− iM(T ) = 2ψd−1 − 4ψd−4 > 0.

If T has the form B̂∗
d,k , k ⩾ 5, then for 8 ⩽ d ⩽ 10 the theorem’s statement is

verified by enumeration, and for d ⩾ 11 from the induction hypothesis it follows

that

M(n, d)− iM(T ) ⩾M(n, d)−M(n− 2, d− 2)−M(n− 3, d− 3) = 0,

where iM(T ) =M(n, d) only if T has the form B̃′
4,n .

2. Vertex u in T is adjacent to t, t ⩾ 2, paths of two vertices, and exactly one leaf.

In this case tree T has the form shown in Fig. 16b, where diam(T ′) ⩾ d − 3. We

have

iM(T ) ⩽M(n− 2, d) + 2t−1 · max
d′⩾d−3

M(n− 2t− 2, d′). (24)
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2.1. If 2 ∤ (n− d), then from lemma 15 it follows that

max
d′⩾d−3

M(n− 2t− 1, d′) ⩽M(n− 2t− 2, d− 2).

Then (24) implies

M(n, d)− iM(T ) ⩾M(n, d)−M(n− 2, d)− 2t−1 ·M(n− 2t− 2, d− 2) =

= 2(n−d−1)/2(ψd−2 − ψd−4)− 2t−1(ψd−3 − ψd−4) ⩾
⩾ 2(n−d−1)/2(ψd−2 − ψd−4)− 2(n−d−3)/2(ψd−3 − ψd−4) =

= 2(n−d−3)/2(2ψd−2 − ψd−1) > 0.

2.2. If 2 | (n− d), then from lemma 15 it follows that

max
d′⩾d−3

M(n− 2t− 2, d′) ⩽M(n− 2t− 2, d− 3).

Then (24) implies

M(n, d) −iM(T ) ⩾M(n, d)−M(n− 2, d)− 2t−1 ·M(n− 2t− 2, d− 3) =

= 2(n−d−2)/2ψd−1 − 2t−1(ψd−4 − ψd−5)− 2(n−d)/2ψd−5 ⩾
⩾ 2(n−d−2)/2ψd−1 − 2(n−d−2)/2(ψd−4 − ψd−5)− 2(n−d)/2ψd−5 = 0,

where for the equality iM(T ) =M(n, d) it is necessary that t = n−d
2 . But for t = n−d

2

we have

M(n, d)− iM(T ) = 2(n−d)/2(ψd−1 − ψd−2)− ψd−3 ⩾ 4(ψd−1 − ψd−2)− ψd−3 > 0.

3. Vertex u in T is adjacent to one path of two vertices and one leaf. In this case

tree T has the form shown in Fig. 16c, where diam(T ′) ⩾ d− 3. In this case, as in

the previous ones, we apply the induction hypothesis and lemma 15:

3.1. If 2 | (n− d), then

M(n, d)− iM(T ) ⩾M(n, d)−M(n− 2, d− 1)−M(n− 4, d− 3) =

= (2(n−d)/2 − 1)(ψd−4 − ψd−5)− ψd−2 + ψd−3 ⩾
⩾ 3(ψd−4 − ψd−5)− ψd−2 + ψd−3 > 0.

3.2. If 2 ∤ (n− d), then

M(n, d)− iM(T ) ⩾M(n, d)−M(n− 2, d− 1)−M(n− 4, d− 2) ⩾
⩾ (2(n−d−1)/2 − 1)(ψd−2 − ψd−4) + ψd−1 − ψd−3 − 1 > 0.
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4. Now suppose that vertex u is adjacent to one path of two vertices and is not

adjacent to any leaves (i.e., deg u = 2). Let us consider vertex u′ adjacent to u and

located at distance 3 from the end of the diametral path P . Four cases are possible:

4.1. Vertex u′ is adjacent to at least one path of two vertices. Then M(n, d) −

− iM(T ) ⩾ D3(n, d), where

D3(n, d) =M(n, d)−M(n− 2, d− 1)−M(n− 3, d− 1).

4.1.1. If n = d+ 3, then D3(n, d) = 3ψd−2 − ψd−3 − ψd > 0.

4.1.2. If n = d+ 4, then for d ⩾ 12 the relations

D3(n, d) = 2ψd−4 − ψd−3 − ψd−5 > 0

hold, and for 8 ⩽ d ⩽ 11 the inequality iM(T ) < M(n, d) is verified by enumeration.

4.1.3. If 2 ∤ (n− d) and n ⩾ d+ 5, then

D3(n, d) ⩾ (2(n−d−1)/2 − 1)(ψd−2 − ψd−3) + ψd−1 − ψd−2 − 1 > 0.

4.1.4. If 2 | (n− d) and n ⩾ d+ 6, then

D3(n, d) = 2(n−d−2)/2(2ψd−4 − ψd−2)− ψd−2 + ψd−3 − 1 ⩾
⩾ 4(2ψd−4 − ψd−2)− ψd−2 + ψd−3 − 1 > 0.

4.2. Vertex u′ is not adjacent to any path of two vertices, but is adjacent to one

leaf. In this case from statement 13 and the induction hypothesis it follows that

iM(T ) ⩽ 2M(n− 3, d− 2) < M(n, d).

4.3. The degree of vertex u′ equals 2. In this case let us consider vertex u′′ —

adjacent to u′ and located at distance 4 from the end of path P . Let us first consider

the situation when u′′ is not adjacent to any path of two vertices. If d /∈ {9, 10}, or

2 ∤ (n − d), then the theorem’s statement immediately follows from the induction

hypothesis and the equality

M(n− 2, d− 2) +M(n− 3, d− 3) =M(n, d).

The cases d = 9, 2 ∤ n and d = 10, 2 | n need to be considered separately due to

the ”non-standard” behavior of function M(n, d) for d = 7, 2 ∤ n:
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4.3.1. d = 9 and 2 ∤ n. If tree T \ {w,w′} is not isomorphic to tree B̃′
7,n−2 and

simultaneously tree T \ {w,w′, u} is not isomorphic to tree B̃′
6,n−3,p , then from the

induction hypothesis it follows that

iM(T ) ⩽M(n− 2, 7) +M(n− 3, 6)− 2 < M(n, 7).

If however tree T \ {w,w′} is isomorphic to tree B̃′
7,n−2 , or tree T \ {w,w′, u} is

isomorphic to tree B̃′
6,n−3,p , then tree T falls under one of the already examined

cases 1, 3, 4.2.

4.3.2 d = 10 and 2 | n. If tree T \ {w,w′} is not isomorphic to tree B̌′
d,n−2 and

simultaneously tree T \ {w,w′, u} is not isomorphic to tree B̃′
7,n−3 , then from the

induction hypothesis it follows that

iM(T ) ⩽M(n− 2, 8) +M(n− 3, 7)− 2 < M(n, 7).

If tree T \ {w,w′} is isomorphic to tree B̌′
d,n−2 , then T has the form B̃′

7,n . If tree

T \{w,w′, u} is isomorphic to tree B̃′
7,n−3 , then tree T falls under one of the already

examined cases 1, 3, 4.2.

4.4. It remains now only to consider the case when the degree of vertex u′ equals

2, and vertex u′′ is adjacent to at least one path of two vertices. Four subcases are

possible:

4.4.1. Tree T has diameter 8. Then n ⩾ 11 and T has the form B̂8,n or B̂′
8,n . From

the table below, it is evident that in both cases iM(T ) < M(n, 8).

T iM(T ) M(n, 8)− iM(T )

B̂8,n 9 · 2(n−9)/2 + 3 2(n−9)/2 − 1

B̂′
8,n 9 · 2(n−10)/2 + 4 5 · 2(n−10)/2 − 4

4.4.2. Tree T has diameter 9. Then n ⩾ 14 and T has the form B̂9,n,p , B̂′
9,n,p or

B̂′′
9,n,p . From the table below, it is evident that in all three cases iM(T ) < M(n, 9).
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T iM(T )
lower bound

for (M(n, 9)− iM(T ))

B̂9,n,p 9 · 2(n−10)/2 + 3(2p + 2(n−10−2p)/2) + 1 7 · 2(n−12)/2 − 5

B̂′
9,n,p 9 · 2(n−11)/2 + 3 · 2p + 6 · 2(n−11−2p)/2 3 · 2(n−9)/2 − 6

B̂′′
9,n,p 9 · 2(n−12)/2 + 6(2p + 2(n−12−2p)/2) 2(n−4)/2 − 10

4.4.3. d ⩾ 10 and T has the form shown in Fig. 16d. Then, if 2 | (n − d) and

n ⩾ d+ 6, then

M(n, d)− iM(T ) ⩾M(n, d)−M(n− 2, d)− 3 · 2t−1 ·M(n− 2t− 5, d− 4) =

= 2(n−d−2)/2(ψd−1 − 3ψd−6)− 3 · 2t−1(ψd−5 − ψd−6) ⩾
⩾ 2(n−d−2)/2(ψd−1 − 3ψd−6)− 3 · 2(n−d−4)/2(ψd−5 − ψd−6) =

= 2(n−d−4)/2(2ψd−4 − ψd−3) > 0.

If n = d+ 4, then t = 1 and

M(n, d)− iM(T ) ⩾M(d+ 4, d)−M(d+ 2, d)− 3M(d− 3, d− 4) =

= 4ψd−1 − 2ψd − 2ψd−3 > 0.

If 2 ∤ (n− d), then

M(n, d)− iM(T ) ⩾M(n, d)−M(n− 2, d)− 3 · 2t−1 ·M(n− 2t− 5, d− 5) =

= 2(n−d−1)/2(ψd−2 − 3ψd−7)− 3 · 2t−1(ψd−6 − ψd−7) ⩾
⩾ 2(n−d−1)/2(ψd−2 − 3ψd−7)− 3 · 2(n−d−3)/2(ψd−6 − ψd−7) =

= 2(n−d−3)/2(2ψd−2 − 3ψd−4) > 0.

4.4.4. d ⩾ 10 and T has the form shown in Fig. 16e. Then, if 2 | (n − d) and

n ⩾ d+ 6, then

M(n, d)− iM(T ) ⩾M(n, d)−M(n− 2, d)− 3 · 2t−1 ·M(n− 2t− 6, d− 5) =

= 2(n−d−2)/2(ψd−1 − 3ψd−7)− 3 · 2t−1(ψd−6 − ψd−7) ⩾
⩾ 2(n−d−2)/2(ψd−1 − 3ψd−7)− 3 · 2(n−d−4)/2(ψd−6 − ψd−7) =

= 2(n−d−4)/2(2ψd−3 − ψd−4) > 0.

If n = d+ 4, then t = 1 and

M(n, d)− iM(T ) ⩾M(d+ 4, d)−M(d+ 2, d)− 3M(d− 4, d− 5) =

= ψd−1 + 2ψd−3 − 2ψd−2 > 0.
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If 2 ∤ (n− d), then

M(n, d)− iM(T ) ⩾M(n, d)−M(n− 2, d)− 3 · 2t−1 ·M(n− 2t− 6, d− 4) =

= 2(n−d−3)/2(2ψd−2 − 3ψd−6)− 3 · 2t−1(ψd−5 − ψd−6) ⩾
⩾ 2(n−d−3)/2(2ψd−2 − 3ψd−6)− 3 · 2(n−d−5)/2(ψd−5 − ψd−6) =

= 2(n−d−5)/2(4ψd−2 − 3ψd−3) > 0.

The theorem is proved.
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Chapter 3. Estimates of the Number of
Independent Sets in Graphs with Fixed
Independence Number

We study the relationships between the size of a maximum independent set and
the number of independent sets in various classes of graphs.

3.1 Upper Bound on the Number of Independent Sets in the
Class of All Graphs with a Given Independence Number

Let n, α ∈ N, α ⩽ n. Let i(n, α) denote the maximum number of independent
sets among all graphs on n vertices with independence number α:

i(n, α) = max
n(G)=n,
α(G)=α

i(G). (25)

Recall that UKn,α denotes the union of (α ·(⌊n/α⌋+1)−n) cliques of size ⌊n/α⌋
and (n− α · ⌊n/α⌋) cliques of size ⌈n/α⌉.

Let us prove several auxiliary statements.

Proposition 17. For α < n, the following inequalities hold:

1. i(n, α) < i(n, α + 1),

2. i(n− 1, α) < i(n, α).

Proof.

1. Let G be a graph such that n(G) = n, α(G) = α and i(G) = i(n, α). Then G

has the following property: any graph G′ obtained from G by removing one edge

has parameters n(G′) = n, α(G′) = α + 1. We have

i(n, α + 1) ⩾ i(G′) > i(G) = i(n, α).
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2. Let G be a graph such that n(G) = n− 1, α(G) = α and i(G) = i(n− 1, α). By

adding to G a vertex v /∈ V (G) and all edges {v}× V (G), we obtain a graph G′

such that n(G′) = n, α(G′) = α. We get

i(n, α) ⩾ i(G′) > i(G) = i(n− 1, α).

For n, α ∈ N let

m(n, α) = (⌈n/α⌉+ 1)n−α·⌊n/α⌋ · (⌊n/α⌋+ 1)α·(⌊n/α⌋+1)−n.

One can easily verify that i(UKn,α) = m(n, α).

Proposition 18. For 1 < α < n, the following inequalities hold

2α−1 ⩽ m(n− ⌈n/α⌉ , α− 1) = m(n, α)−m(n− 1, α).

Proof. The inequality m(n − ⌈n/α⌉ , α − 1) ⩾ 2α−1 follows from the fact that

m(n− ⌈n/α⌉ , α− 1) is a product of α− 1 factors, each of which is not less than 2.

Let us prove the equality

m(n− ⌈n/α⌉ , α− 1) = m(n, α)−m(n− 1, α).

Consider first the case when n = α · t, t ∈ N. We have

m(n− ⌈n/α⌉ , α− 1) = m(n− t, α− 1) = (t+ 1)α−1 =

= (t+ 1)α − (t+ 1)α−1t =

= m(n, α)−m(n− 1, α).

Now let n = α · t+ s, where t, s ∈ N and 1 ⩽ s < α. Then

m(n− ⌈n/α⌉ , α− 1) = m(n− t− 1, α− 1) = (t+ 2)s−1(t+ 1)α−s =

= (t+ 2)s(t+ 1)α−s − (t+ 2)s−1(t+ 1)α−s+1 =

= m(n, α)−m(n− 1, α).
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Theorem 18. For any n, α, the following equality holds

i(n, α) = m(n, α), (26)

and the maximum in (25) is achieved on graphs isomorphic to UKn,α , and only on

them.2

Proof. The proof is by induction on n. If n = 1, then the statement of the theorem

holds. Let n > 1 and assume the theorem holds for all n′ < n. In the case when

α = 1 or α = n, the statement of the theorem holds. From now on, we assume

1 < α < n. Note immediately that i(n, α) ⩾ m(n, α), since i(UKn,α) = m(n, α).

Let G be a graph for which n(G) = n, α(G) = α, i(G) = i(n, α). Consider two

cases.

Suppose that the maximum degree of vertices in G does not exceed (⌈n/α⌉−2).

Any set of vertices {v1, . . . , vt} ⊆ V (G) satisfying the conditions

vj ∈ V (G) \ (
⋃
j′<j

({vj′} ∪ ∂vj′))

will be independent. The size of the largest such set will be not less than n
⌈n/α⌉−1 > α,

which contradicts the equality α(G) = α.

Now let the maximum degree of vertices in G be d, d ⩾ ⌈n/α⌉ − 1. Let us

decompose G with respect to an arbitrary vertex v of degree d:

i(G) = i(G \ {v}) + i(G \ ({v} ∪ ∂v)).

Since α(G \ v) ⩽ α, and

α(G \ (v ∪ ∂v)) ⩽ min{α− 1, n− d− 1},

then, using statement 17, taking into account the induction hypothesis we have

i(G) ⩽ i(n− 1, α) + i(n− d− 1,min{α− 1, n− d− 1}) ⩽
⩽ m(n− 1, α) +m(n− d− 1,min{α− 1, n− d− 1}).

2This theorem is a special case of one of Erdős’s theorems. See footnote on p. 11.

[This is an automated translation of the original manuscript from Russian into English]



66

Let us first consider the case when d > n− α. Then, using statement 18, we obtain

i(G) ⩽ m(n− 1, α) +m(n− d− 1, n− d− 1) =

= m(n− 1, α) + 2n−d−1 ⩽
⩽ m(n− 1, α) + 2α−2 <

< m(n, α),

which contradicts the choice of G. Now let d ⩽ n − α. Taking into account the

inequality d ⩾ ⌈n/α⌉ − 1, using statement 18, we obtain

i(G) ⩽ m(n− 1, α) +m(n− d− 1, α− 1) ⩽
⩽ m(n− 1, α) +m(n− ⌈n/α⌉ , α− 1) =

= m(n, α).

(27)

From (27) and the induction hypothesis, it follows that to achieve equality i(G) =

= m(n, α), it is necessary that the graph G \ {v} be isomorphic to UKn−1,α , the

graph G \ ({v} ∪ ∂v) be isomorphic to UKn−⌈n/α⌉,α−1 , and the maximum degree of

vertices in G be equal to (⌈n/α⌉ − 1). But this is possible only when G ≃ UKn,α .

The theorem is proved.

Corollary. Among all forests on n vertices with independence number α, only the

union of a matching on 2(n − α) vertices and 2α − n isolated vertices has the

maximum number of independent sets.

Remark. For a sequence of parameter pairs (nk, αk) such that nk = k2 + 2k and

αk = k2 , the ratio of the right-hand sides of (2) and (26) equals

(2 + 2/k)k
2

2k2 · (3/2)2k
=

(
4

9
(1 + 1/k)k

)k

> ck,

where c > 1. At the same time, the logarithms of the right-hand sides of (2) and

(26) are asymptotically equal.
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3.2 Upper Bounds on the Number of Independent Sets in
Forests with Given Independence Number

Let Tn,α denote the tree obtained from the star K1,α by subdividing (n−α− 1)

edges. One can easily verify that α(Tn,α) = α and

i(Tn,α) = 2n−α+1 + 3n−α+122α−n+1.

Theorem 19. For any n, α (n ⩾ 2), among all trees on n vertices with independence

number α, only trees isomorphic to Tn,α have the maximum number of independent

sets.

Proof. We shall prove this by induction on n. For n ∈ {2, 3}, the statement of the

theorem holds. Let n ⩾ 4 and assume the theorem holds for smaller values of n.

Let G be a tree such that n(G) = n, α(G) = α, and i(G) ⩾ i(G′) for any tree

G′ with parameters n(G′) = n, α(G′) = α. Let the diameter of graph G be d. Let

v, v′ be pendant vertices in G at distance d from each other, and let w be the only

neighbor of v in G.

1. Let w have degree 2. In this case, the graph G \ {v, w} is a tree. Using the

induction hypothesis taking into account i(G \ {v, w}) ⩽ α − 1, as well as the

monotonicity of i(Tn,α) with respect to α for fixed n, we obtain

i(G) = i(G \ {v}) + i(G \ {v, w}) ⩽
⩽ (2n−α−2 + 3n−α−2 · 22α−n+2) + (2n−α−2 + 3n−α−2 · 22α−n+1) =

= 2n−α−1 + 3n−α−1 · 22α−n+1.

Moreover, from the induction hypothesis it follows that for equality i(G) = 2n−α−1+3n−α−1·22α−n+1

to hold, it is necessary that graphs G\{v} and G\{v, w} be isomorphic to Tn−1,α

and Tn−2,α−1 respectively. This is possible only when G ≃ Tn,α .

2. Let degw ⩾ 3. Let us show that in this case vertex w is adjacent to at least

one more pendant vertex besides v . Assume the contrary, in which case there

exist vertices w1, w2 ∈ ∂w \ {v} for which degw1 ⩾ 2, degw2 ⩾ 2. At least

one of vertices w1, w2 does not lie on the path from v′ to v , let it be w1 . Let
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v′′ ∈ ∂w1 \ {w}. The distance between vertices v′ and v′′ will be not less than

(d+1), which contradicts the definition of d. Thus, among the neighbors of vertex

w there are at least two pendant vertices. From this it follows that vertex w does

not belong to any maximum independent set in G, while vertex v belongs to all

such sets. Consequently, α(G \ {v}) = α− 1. We have

i(G) = i(G \ {v}) + i(G \ {v, w}) ⩽
⩽ (2n−α−1 + 3n−α−1 · 22α−n) + i(n− 2, α− 1) =

= (2n−α−1 + 3n−α−1 · 22α−n) + 3n−α−1 · 22α−n =

= 2n−α−1 + 3n−α−1 · 22α−n+1.

From the induction hypothesis and corollary to theorem 18 it follows that for

equality i(G) = 2n−α−1 + 3n−α−1 · 22α−n+1 to hold, it is necessary that graph

G\{v} be isomorphic to Tn−1,α−1 , and graph G\{v, w} be a union of a matching

and isolated vertices. This is possible only when G ≃ Tn,α .

Let Fn,α denote the union of a matching on 2(n − α − 1) vertices and a star
K1,2α−n+1 .

Theorem 20. Among all forests on n vertices without isolated vertices with inde-

pendence number α, the maximum number of independent sets is achieved only on

forests isomorphic to Fn,α .

Proof. We shall prove this by induction on n. For n ∈ {2, 3}, the statement of

the theorem holds. The theorem is also obviously true when α = n− 1. From now

on we assume α < n − 1. Let F be a forest without isolated vertices such that

n(F ) = n, α(F ) = α and i(F ) ⩾ i(F ′) for any forest F ′ without isolated vertices

with the same number of vertices and independence number. From theorem 19 and

inequality i(Tn,α) < i(Fn,α) for α < n − 1 it follows that F cannot be a tree.

Consequently, there exist induced subgraphs F1, F2 such that V (F1) ∩ V (F2) = ∅

and F = F1 ∪ F2 . We have

i(F ) = i(F1)i(F2); n(F ) = n(F1) + n(F2); α(F ) = α(F1) + α(F2),
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from which it follows that if at least one of the graphs F1, F2 is not isomorphic to

Fn′,α′ for some n′, α′ , then i(F ) < i(Fn,α). If both graphs F1, F2 contain stars on t1

and t2 vertices respectively (t1, t2 ⩾ 3), then by replacing these stars in F with one

star K1,t1+t2−3 and an edge, we obtain a graph F ′ such that n(F ′) = n, α(F ′) = α, i(F ′) > i(F )

— a contradiction. If one of the graphs F1, F2 is a matching, then F ≃ Fn,α , which

was to be proved.

3.3 Relationships Between Independence Number and Num-
ber of Independent Sets in Regular Graphs

Let G(n, k) denote the class of all k -regular graphs on n vertices. N. Alon’s
conjecture (see Introduction) states that the maximum number of independent sets
in class G(n, k) for 2k | n is achieved on GA(n, k) — the union of n

2k disjoint complete
bipartite graphs. Alon’s graph GA(n, k) has the maximum possible independence
number for a regular graph, n

2 , with

i(GA(n, k)) = 2
n
2 (1+θ(k−1)).

A question arises: how much does one need to restrict the independence number of
graph G from class G(n, k) to achieve the inequality i(G) ⩽ 2

n
2 ? A partial answer

to this question is given by theorem 22 below.

Lemma 18. For any natural number k, k ⩾ 3, there exists a k-regular graph Gk

for which the following inequalities hold

α(Gk) <
|V (Gk)|

2

(
1− Ω(k−1)

)
, (28)

log2(i(Gk)) >
|V (Gk)|

2

(
1 + Ω(k−1)

)
. (29)

Proof. Let us consider graphs Gk of the following form:
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• If k is even, then

V (Gk) = {ui | i = 1, k }∪

∪{vji | i = 1, k, j = 1, k − 2 }∪

∪{wj
l | l = 1, k − 2, j = 1, k − 2 };

E(Gk) = { {ui, ui+1} | i = 1, k − 1 } ∪ { {uk, u1} }∪

∪{ {ui, vji } | i = 1, k, j = 1, k − 2 }∪

∪{ {vji , w
j
l } | i = 1, k, l = 1, k − 2, j = 1, k − 2 }∪

∪{ {vji , v
j+1
i } | i = 1, k, j = 1, 3, . . . , k − 3}.

• If k is odd, then

V (Gk) = {ui | i = 1, k }∪

∪{vji | i = 1, k, j = 1, k − 2 }∪

∪{wj
l | l = 1, k − 2, j = 1, k − 3 }∪

∪{wk−2
l | l = 1, k − 1};

E(Gk) = { {ui, ui+1} | i = 1, k − 1 } ∪ { {uk, u1} }∪

∪{ {ui, vji } | i = 1, k, j = 1, k − 2 }∪

∪{ {vji , w
j
l } | i = 1, k, l = 1, k − 2, j = 1, k − 3 }∪

∪{ {vk−2
i , wk−2

l } | i = 1, k, l = 1, k − 1 }∪

∪{ {vji , v
j+1
i } | i = 1, k, j = 1, 3, . . . , k − 4}.

For any k ⩾ 3, graph Gk is k -regular. Examples of graphs G3 and G4 are shown

in Fig. 17a and 17b respectively.

Fig. 18 shows how graph Gk is obtained as a union of simpler graphs (odd k

case on top, even case below):

From now on we will only consider the case of even k ; the reasoning for odd k

is similar.

In this case Gk is a graph on p = 2k2 − 5k + 4 vertices. Let us show that the

inequality α(Gk) ⩽ p
2(1 − c′k−1) holds. Let A be an arbitrary independent set in

graph Gk . There are two possible cases:
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Figure 17. Graphs G3 and G4

i) Some vertex among u1, . . . , uk belongs to set A. Let it be vertex u1 . Then none

of the vertices v11, . . . , v
k−2
1 belongs to set A. Moreover, in total from the set

{u1, . . . , uk} at most
⌊
k
2

⌋
vertices can belong to A. For each j ∈ {1, 3, . . . , k − 3}

from the set

{vji | i = 1, k} ∪ {vj+1
i | i = 1, k} ∪ {wj

l | l = 1, k − 2} ∪ {wj+1
l | l = 1, k − 2}

at most (k − 1) + (k − 2) vertices can belong to A. Therefore

|A| ⩽ k

2
+
k − 2

2
(2k − 4) = k2 − 3k + 3 =

p

2
(1− Ω(k−1)).

ii) None of the vertices u1, . . . , uk belongs to A. In this case

|A| ⩽ k − 2

2
(2k − 2) = k2 − 3k + 2.

This value is achieved when

A = {vji | i = 1, k, j ≡ 1 (mod 2)} ∪ {wj
l | l = 1, k − 2, j ≡ 0 (mod 2)}.

As in the previous case, |A| = p
2(1− Ω(k−1)), and thus inequality (28) holds.

Let us now estimate the lower bound for the number of independent sets in graph

Gk . Note that i(G) > (i(G′
k))

(k−2)/2 , where G′
k is a subgraph of graph G induced

by the vertex set

{vji | i = 1, k, j = 1, 2 } ∪ {wj
l | l = 1, k − 2, j = 1, 2 }.
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Figure 18. Structure of graph Gk

Graph G′
k is shown in Fig. 19.

The number i(G′
k) can be written explicitly:

i(G′
k) = (2k−2 − 1)(2k + 2k−2 − 1) +

k∑
j=0

(
k

j

)
(2k−j + 2k−2 − 1) =

=
9

16
· 22k + 3k − 5

2
· 2k + 1 >

9

16
· 22k.

Hence

log2(i(G)) > (2k + log2(9/16))(k − 2)/2 =

= k2 + k log2(3/16)− log2(9/16) =
p

2
(1 + Ω(k−1)).

We will need the following theorem, proved in [18] using theorem 6:

Theorem 21 (A.A. Sapozhenko [18]). Let graph G on n vertices be regular of degree
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Figure 19. Graph G′
k

k , and let α(G) = µ. Then for any l, 1 ⩽ l ⩽ k, the following inequality holds

i(G) ⩽
(

nk

µ(2k − l)
+ 1

)µ

· (el)n/l,

where e is the base of the natural logarithm.

Theorem 22. For arbitrarily large K and N there exists a k-regular graph G on

n vertices such that k > K , n > N , and

α(G) <
n

2

(
1− Ω(k−1)

)
,

log2(i(G)) >
n

2

(
1 + Ω(k−1)

)
.

On the other hand, for any constant θ ∈ (0, 1/2) for any k-regular graph G on n

vertices such that α(G) < n
2 (1− Ω(k−θ)), the following inequality holds

log2(i(G)) <
n

2
(1− Ω(k−θ)).

Proof. Let us prove the first part of the theorem. Fix arbitrary natural numbers

n and k such that k | n. Consider n/k graphs Gk,j, j = 1, n/k , each isomor-

phic to graph Gk , whose construction is described in lemma 18. Consider graph

G =
⋃n/k

j=1Gk,j . Obviously, G ∈ G(n, k). From inequalities (28) and (29), and from

equality i(G) =
∏n/k

j=1 i(Gk,j) it follows that

α(G) <
n

2

(
1− Ω(k−1)

)
,

log2(i(G)) >
n

2

(
1 + Ω(k−1)

)
,

Now let us prove the second part of the theorem. From theorem 21, setting

l =
√
k , for sufficiently large n and k for any graph G ∈ G(n, k) such that
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α(G) < n
2 (1− εk−θ), we obtain

i(G) ⩽
(

nk
n
2 (1− εk−θ)(2k −

√
k)

+ 1

)n
2 (1−εk−θ)

· (e
√
k)nk

−1/2

=

= 2
n
2 (1−εk−θ) ·

(
k

(1− εk−θ)(2k −
√
k)

+
1

2

)n
2 (1−εk−θ)

· (e
√
k)nk

−1/2

=

= 2
n
2 (1−εk−θ) ·

(
1 +

2εk1−θ +
√
k − εk1/2−θ

2(1− εk−θ)(2k −
√
k)

)n
2 (1−εk−θ)

· (e
√
k)nk

−1/2

<

< 2
n
2 (1−εk−θ) · exp

(
n

2
· 2εk

1−θ +
√
k − εk1/2−θ

4k − 2
√
k

)
· (e

√
k)nk

−1/2

=

= 2
n
2 (1−εk−θ) · exp

(n
2
·
(ε
2
k−θ +O(k−1/2 ln k)

))
=

= 2
n
2 (1−(ε−

ε
2 ln 2)k−θ+O(k−1/2 ln k)) < 2

n
2 (1−

ε
4k

−θ+O(k−1/2 ln k)).

From this it follows that for any fixed θ ∈ (0, 1
2) we have log2(i(G)) <

n
2 (1−Ω(k−θ)).

3.4 Number of Independent Sets in Quasi-Regular Bipartite
Graphs

The entropy of a random variable X that takes values xi with probabilities pi is
defined as H(X) = −

∑
i

pi log2 pi . The function of real argument x ∈ [0, 1] defined

by the equality
H(x) = −x log2 x− (1− x) log2(1− x),

is called the entropy function.

Lemma 19 (J. Shearer [24]). Let X = (X1, X2, . . . , Xn) be a vector random

variable. Let A = {Ai}si=1 be a family of subsets of {1, 2, . . . , n}. Let each number

i, 1 ⩽ i ⩽ n appear in at least k sets A ∈ A. For each A ∈ A define the vector r.v.

XA = (Xj | j ∈ A). Then ∑
A∈A

H[XA] ⩾ kH[X].

The main properties of entropy are given below (see, for example, [22, §14.6]).

Proposition 19. For any r.v. Xi
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H1) H[(X1, X2)] = H[X1 | X2] +H[X2].

H2) H[(X1, X2, . . . , Xk)] ⩽ H[X1] +H[X2] + . . .+H[Xk].

H3) If r.v. X1 is functionally dependent on X2 , then for any r.v. X3 the inequality

H[X3 | X2] ⩽ H[X3 | X1] holds.

H4) If r.v. X1 is functionally dependent on X2 , then H[(X1, X2)] = H[X2].

H5) If r.v. X takes k values, then H[X] ⩽ log2 k .

The following theorem generalizes theorem 5 to quasi-regular bipartite graphs.

Theorem 23. Let G be a bipartite graph with parts A and B . Let the degrees of

vertices from A be bounded above by number k2 , and the degrees of vertices from B

be bounded below by number k1 . Then

i(G) ⩽ (2k1 + 2k2 − 1)
|A|
k1 .

Proof. Every independent set I ∈ I(G) will be identified with its vector indicator

(Xv | v ∈ A∪B). Here Xv is the indicator of the event ”vertex v is contained in the

chosen independent set”. Applying sequentially properties H1, H2, lemma 19, and

property H3, we derive

log2 i(G) = H[I] = H[XA | XB] +H[XB] ⩽

⩽
∑
v∈A

H[Xv | XB] +
1

k1

∑
v∈A

H[XN(v)] ⩽

⩽
∑
v∈A

(
H[Xv | XN(v)] +

1

k1
H[XN(v)]

)
.

(30)

Let us introduce for each vertex v a random variable Yv — the indicator of event

”XN(v) = 0̃”. Let pv = Pr[Yv = 1]. By property H3, from the definition of conditional

entropy, we get

H[Xv | XN(v)] ⩽ H[Xv | Yv] ⩽ pv. (31)

By properties H4, H1, definition of conditional entropy and property H5,

H[XN(v)] = H[(XN(v), Yv)] = H[Yv] +H[XN(v) | Yv] ⩽
⩽ H(pv) + (1− pv) log2(2

k2 − 1).
(32)
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Substituting (32) and (31) into (30), we arrive at the inequality:

log2 i(G) ⩽
∑
v∈A

(
pv +

1

k1

(
H(pv) + (1− pv) log2(2

k2 − 1)
))

⩽

⩽ |A| · max
p∈[0,1]

(
p+

1

k1

(
H(p) + (1− p) log2(2

k2 − 1)
))

=

= |A| · max
p∈[0,1]

(
1− p+

1

k1

(
H(p) + p log2(2

k2 − 1)
))

=

= |A|+ |A|
k1

· max
p∈[0,1]

(
H(p) + p log2

(
2k2 − 1

2k1

))
.

(33)

Function f(p) = H(p) + p log2

(
2k2−1
2k1

)
achieves its maximum at point

p0 =
2k2 − 1

2k1 + 2k2 − 1
,

and the maximum value equals log2

(
2k1+2k2−1

2k1

)
. From this and from (33) it follows

that

log2 i(G) ⩽ |A|+ |A|
k1

log2

(
2k1 + 2k2 − 1

2k1

)
=

|A|
k1

log2(2
k1 + 2k2 − 1),

which directly implies the statement of the theorem.

The following statement, proved in a different way in [16], follows from lemma 1
and theorem 23.

Theorem 24 (A.A. Sapozhenko [16]). Let G be a k-regular graph on n vertices.

Then

i(G) ⩽ 2
n
2 (1+O(

√
(log2 k)/k)).
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Appendix A. The Sturm sequence for
(x− 1)(x4 + 1)4 − x16

f0 = x17 − 2x16 + 4x13 − 4x12 + 6x9 − 6x8 + 4x5 − 4x4 + x− 1,

f1 = x16 − 32
17
x15 + 52

17
x12 − 48

17
x11 + 54

17
x8 − 48

17
x7 + 20

17
x4 − 16

17
x3 + 1

17
,

f2 = x15 − 17
4
x13 + 59

16
x12 + 3

2
x11 − 51

4
x9 + 405

32
x8 + 3

2
x7 − 51

4
x5 + 211

16
x4 + 1

2
x3 − 17

4
x+ 287

64
,

f3 = −x14 + 11
4
x13 − 2x12 − 3x10 + 69

8
x9 − 6x8 − 3x6 + 35

4
x5 − 6x4 − x2 + 47

16
x− 2,

f4 = −x13 + 29
21
x12 + 8

7
x11 − 2

7
x10 − 53

14
x9 + 41

14
x8 + 8

7
x7 − 8

21
x6 − 85

21
x5 + 53

21
x4 + 8

21
x3−

−1
7
x2 − 39

28
x+ 65

84
,

f5 = x12 − 3264
2209

x11 − 696
2209

x10 − 906
2209

x9 + 11055
4418

x8 − 3432
2209

x7 − 928
2209

x6 − 1208
2209

x5 + 5161
2209

x4−

−1172
2209

x3 − 348
2209

x2 − 453
2209

x+ 6637
8836

,

f6 = −x11 + 879
829
x10 + 6405

3316
x9 − 93919

39792
x8 − 693

829
x7 + 1172

829
x6 + 2135

829
x5 − 42969

13264
x4 − 625

2487
x3+

+ 879
1658

x2 + 6405
6632

x− 32779
26528

,

f7 = −x10 + 53407
17532

x9 − 4399
1948

x8 − 260
1461

x7 − 4
3
x6 + 24197

5844
x5 − 51323

17532
x4 − 130

1461
x3 − 1

2
x2+

+18355
11688

x− 12611
11688

,

f8 = x9 − 853668
689617

x8 − 315456
689617

x7 + 29220
689617

x6 + 1008501
689617

x5 − 987404
689617

x4 − 157728
689617

x3 + 17532
689617

x2+

+ 796431
1379234

x− 336342
689617

,

f9 = x8 − 900527616
621193153

x7 − 68293440
621193153

x6 − 11922180
88741879

x5 + 105438627
88741879

x4 − 455780744
621193153

x3 − 40976064
621193153

x2−

− 7153308
88741879

x+ 73281225
177483758

,

f10 = x7 − 145719580
29489963

x6 − 882209825
117959852

x5 + 11071460827
471839408

x4 + 10728971
58979926

x3 − 87431748
29489963

x2−

−529325895
117959852

x+ 13409991623
943678816

,

f11 = −x6 − 56333223
551533100

x5 + 3940569
1198985

x4 − 357480
5515331

x3 − 3
5
x2 − 2468075

44122648
x+ 551084501

275766550
,

f12 = x5 − 70388030335
37930036817

x4 + 940679000
37930036817

x3 − 55153310
37930036817

x2 + 45527310825
75860073634

x− 85234936291
75860073634

,

f13 = x4 + 739310388352
13435006309713

x3 + 112620848536
13435006309713

x2 + 20883732410
1492778478857

x+ 1868446901133
2985556957714

,

f14 = −x3 − 42628900319
9038969207957

x2 − 312644395521
36155876831828

x− 85929196356567
144623507327312

,

f15 = x2 + 56493602552535
48822373252

x− 57985421050465
48822373252

,

f16 = x− 310948912
303217841

,

f17 = 1.

77
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